Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of the topology on the mechanical properties of porous iron immersed in body fluids
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ( IF 2.5 ) Pub Date : 2021-01-27 , DOI: 10.1177/1464420720987860
MC Salama 1 , D Rechena 2 , L Reis 1, 3 , AM Deus 3, 4 , C Santos 5, 6 , MJ Carmezim 5, 6 , MF Vaz 1, 3
Affiliation  

A new generation of biodegradable metal alloys with a porous structure has been receiving growing attention as temporary bone scaffolds for tissue regeneration. The mechanical response of the scaffolds depends upon several factors including the properties of the metal itself, the amount of porosity, the geometrical topology and the immersion conditions. The purpose of this study is to evaluate the degradation behaviour and the mechanical properties of porous iron samples with porosities in the range of 20–30%. Besides the amount of porosity, the effect of topology was evaluated with the study of different arrangement of pores, as well as pore shapes. The specimens were subjected to chemical degradation by immersion of the iron samples in body fluid simulation conditions. The mechanical properties of the samples prior and after the degradation process were assessed by three-point bending tests. Numerical simulations were carried out and the results were compared with the experimental results. The degradation operated by body fluids tends to reduce the mechanical properties. In comparison with the compact structures, porous structures exhibit lower mechanical strength, but still with reasonable values for the use in temporary implants, which also allows reducing the stress shielding effect, keeping the biodegradable advantages. The present work also confirms that the topological design has a strong influence on the mechanical properties of the specimens and on the biodegradation behaviour.



中文翻译:

拓扑结构对浸入体液中的多孔铁力学性能的影响

作为用于组织再生的临时骨支架,具有多孔结构的新一代可生物降解金属合金已受到越来越多的关注。支架的机械响应取决于几个因素,包括金属本身的特性,孔隙率,几何拓扑和浸入条件。本研究的目的是评估孔隙率在20%至30%之间的多孔铁样品的降解行为和力学性能。除了孔隙率,还通过研究孔的不同排列以及孔的形状来评估拓扑结构的影响。通过将铁样品浸入体液模拟条件下,使样品经受化学降解。通过三点弯曲试验评估降解过程之前和之后样品的机械性能。进行了数值模拟,并将结果与​​实验结果进行了比较。由体液引起的降解倾向于降低机械性能。与紧凑结构相比,多孔结构具有较低的机械强度,但在临时植入物中的使用仍具有合理的价值,这也允许降低应力屏蔽效果,保持了可生物降解的优势。本工作还证实,拓扑设计对标本的机械性能和生物降解行为有很大影响。进行了数值模拟,并将结果与​​实验结果进行了比较。由体液引起的降解倾向于降低机械性能。与紧凑结构相比,多孔结构具有较低的机械强度,但在临时植入物中的使用仍具有合理的价值,这也允许降低应力屏蔽效果,保持了可生物降解的优势。本工作还证实,拓扑设计对标本的机械性能和生物降解行为有很大影响。进行了数值模拟,并将结果与​​实验结果进行了比较。由体液引起的降解倾向于降低机械性能。与紧凑结构相比,多孔结构具有较低的机械强度,但在临时植入物中的使用仍具有合理的价值,这也允许降低应力屏蔽效果,保持了可生物降解的优势。本工作还证实,拓扑设计对标本的机械性能和生物降解行为有很大影响。但仍具有用于临时植入物的合理价值,这还可以降低应力屏蔽效果,保持可生物降解的优势。本工作还证实,拓扑设计对标本的机械性能和生物降解行为有很大影响。但仍具有用于临时植入物的合理价值,这还可以降低应力屏蔽效果,保持可生物降解的优势。本工作还证实,拓扑设计对标本的机械性能和生物降解行为有很大影响。

更新日期:2021-01-28
down
wechat
bug