当前位置: X-MOL 学术Front. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Static Schwinger-Level Electric Field Nonlinearities and Their Significance to Photons and Photon Entanglement
Frontiers in Physics ( IF 3.1 ) Pub Date : 2020-12-11 , DOI: 10.3389/fphy.2020.590531
Dale M. Grimes , Craig A. Grimes

In this work, we postulate that Schwinger’s threshold for a dynamic electric field intensity to induce spatial nonlinearity is a special case and, more generally, it is the threshold field for both static and dynamic electric fields. Fields of this magnitude induce negative-energy charges to adapt positive energy attributes; within an atom, they also support interstate energy transfers and intrastate chaotic mixing of time-varying fields. Nonlinearity-induced chaos forms the basis for the probabilistic nature of photon creation. Answers to physical problems at atomic and lower scales continuously evolve because chaotic-like electron movements change their configurations on a time scale of 10 zs. Within atoms, frequency mixing that creates an optical frequency field occurs in the nonlinear region surrounding the nucleus. On a probabilistic basis, a ring of vacuum charge can be induced that forms into an equivalent waveguide, which confines the energy as it travels permanently away from the atom. The propagating relativistically augmented fields losslessly induce charges that bind and protect the energy-carrying fields. The photon charge-field ensemble is a closed system and possesses all first-order photon properties, including zero rest mass and permanent stability. For near-neighbor photons traveling at a speed approaching c, we find a small constant force between them that is dependent upon their relative spin orientations. Our model shows that the radius of a photon is ≈10 am and that photon wavelength information is coded by energy.



中文翻译:

Schwinger级静电场的非线性及其对光子和光子纠缠的意义

在这项工作中,我们假设Schwinger的动态电场强度引起空间非线性的阈值是一个特例,更一般地说,它是静态和动态电场的阈值场。这种大小的场会感应负能量电荷以适应正能量属性;在一个原子内,它们还支持时变场的州际能量转移和州内混沌混合。非线性引起的混沌形成了光子创造概率性质的基础。原子级和低级物理问题的答案不断发展,因为类似混沌的电子运动会在10 zs的时间尺度上改变其构型。在原子内,创建光频场的混频发生在原子核周围的非线性区域。在概率基础上,可以感应出一个真空电荷环,形成一个等效的波导,当能量永久远离原子传播时,它会限制能量。相对论扩展的增长场无损地感应出电荷,这些电荷束缚并保护了载有能量的场。光子电荷场集合是一个封闭的系统,具有所有一阶光子特性,包括零静质量和永久稳定性。对于近邻光子,以接近 光子电荷场集合是一个封闭的系统,具有所有一阶光子特性,包括零静质量和永久稳定性。对于近邻光子,以接近 光子电荷场集合是一个封闭的系统,具有所有一阶光子特性,包括零静质量和永久稳定性。对于近邻光子,以接近C,我们发现它们之间有一个小的恒定力,这取决于它们的相对旋转方向。我们的模型表明,光子的半径约为≈10 am,并且光子波长信息由能量编码。

更新日期:2021-01-28
down
wechat
bug