当前位置: X-MOL 学术AIAA J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing Wall-Modeled Large-Eddy Simulation or Low-Speed Flows with Heat Transfer
AIAA Journal ( IF 2.1 ) Pub Date : 2021-01-27 , DOI: 10.2514/1.j059997
Haosen H. A. Xu 1 , Xiang I. A. Yang 1 , Pedro M. Milani 2
Affiliation  

This paper reports wall-modeled large-eddy simulation (WMLES) results of low-speed turbulent flows in a plane channel, in ribbed ducts, and around a film cooling jet. We compare our WMLESs to Pirozzoli et al.’s direct numerical simulations (DNSs) of low-speed plane channel flow (Pirozzoli, S., Bernardini, M., and Orlandi, P., “Passive Scalars in Turbulent Channel Flow at High Reynolds Number,” Journal of Fluid Mechanics, Vol. 788, Feb. 2016, pp. 614–639), our own DNSs of ribbed ducts with various pitch-to-height ratios, and Milani et al.’s WRLES and water-tunnel experiment of film cooling (Milani, P. M., Gunady, I. E., Ching, D. S., Banko, A. J., Elkins, C. J., and Eaton, J. K., “Enriching MRI Mean Flow Data of Inclined Jets in Crossflow with Large Eddy Simulations,” International Journal of Heat and Fluid Flow, Vol. 80, Dec. 2019, Paper 108472). We consider Mach number effects below the often-quoted low-Mach-number limit of Ma=0.2. The results show that the Mach number has significant effects on the normalized mean temperature profile, even below the often-quoted low-Mach-number limit of Ma=0.2, due to the associated viscous heating. In addition, we compare the first-grid point implementation (FGI) and the third-grid point implementation (TGI) of the equilibrium wall model. We show that, by placing the large-eddy-simulation/wall-model matching location away from the wall, TGI practically reduces the near-wall resolution seen by the wall model, which in turn leads to underperformance of the wall model. By considering three types of flows with increasing levels of complexities, the objective of this study is to systematically assess WMLES in terms of its ability to predict heat transfer for low-speed flows. For the flows considered here (that is, plane channel, ribbed duct, and film cooling), we show that WMLES with FGI is able to accurately model heat transfer at a much more reduced cost than WRLES and DNS.



中文翻译:

评估带有热传递的壁式大涡模拟或低速流动

本文报道了在平面通道,带肋的管道以及薄膜冷却射流中低速湍流流动的壁模型大涡流模拟(WMLES)结果。我们将WMLES与Pirozzoli等人的低速平面通道流的直接数值模拟(DNS)进行了比较(Pirozzoli,S.,Bernardini,M.和Orlandi,P.,“湍流高通量的被动标量雷诺数”,《流体力学杂志》,第788卷,2016年2月,第614–639页),我们自己的具有不同螺距与高度比的肋管的DNS,以及Milani等人的WRLES和water-薄膜冷却的隧道实验(Milani,PM,Gunady,IE,Ching,DS,Banko,AJ,Elkins,CJ和Eaton,JK,“利用大涡模拟丰富横流中倾斜射流的MRI平均流量数据”,国际工程热和流体流动,卷。80,2019年12月,论文108472)。我们认为马赫数效应低于常被引用的低马赫数极限=0.2。结果表明,马赫数对归一化的平均温度曲线有显着影响,甚至低于经常引用的马赫数低限。=0.2,由于相关的粘性加热。此外,我们比较了平衡壁模型的第一个网格点实现(FGI)和第三个网格点实现(TGI)。我们表明,通过将大涡模拟/壁模型匹配位置放置在远离壁的位置,TGI实际上会降低壁模型所看到的近壁分辨率,从而导致壁模型的性能下降。通过考虑复杂程度不断提高的三种类型的流动,本研究的目的是根据WMLES预测低速流动传热的能力来系统地评估WMLES。对于此处考虑的流量(即,平面通道,带肋管道和薄膜冷却),我们显示具有FGI的WMLES能够以比WRLES和DNS更低的成本准确地模拟传热。

更新日期:2021-01-28
down
wechat
bug