当前位置: X-MOL 学术Commun. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microscopic origins of conductivity in molten salts unraveled by computer simulations
Communications Chemistry ( IF 5.9 ) Pub Date : 2021-01-27 , DOI: 10.1038/s42004-020-00446-2
Marie-Madeleine Walz 1 , David van der Spoel 1
Affiliation  

Molten salts are crucial materials in energy applications, such as batteries, thermal energy storage systems or concentrated solar power plants. Still, the determination and interpretation of basic physico-chemical properties like ionic conductivity, mobilities and transference numbers cause debate. Here, we explore a method for determination of ionic electrical mobilities based on non-equilibrium computer simulations. Partial conductivities are then determined as a function of system composition and temperature from simulations of molten LiFαClβIγ (with α + β + γ = 1). High conductivity does not necessarily coincide with high Li+ mobility for molten LiFαClβIγ systems at a given temperature. In salt mixtures, the lighter anions on average drift along with Li+ towards the negative electrode when applying an electric field and only the heavier anions move towards the positive electrode. In conclusion, the microscopic origin of conductivity in molten salts is unraveled here based on accurate ionic electrical mobilities and an analysis of the local structure and kinetics of the materials.



中文翻译:

计算机模拟揭示了熔盐中电导率的微观起源

熔盐是能源应用中的关键材料,例如电池、热能存储系统或聚光太阳能发电厂。尽管如此,离子电导率、迁移率和迁移数等基本物理化学性质的测定和解释仍引起争论。在这里,我们探索了一种基于非平衡计算机模拟来确定离子电迁移率的方法。然后,根据熔融 LiF α Cl β I γα + β + γ = 1)的模拟,将部分电导率确定为系统组成和温度的函数。高电导率不一定与熔融 LiF的高 Li +迁移率一致给定温度下的α Cl β I γ系统。在盐混合物中,当施加电场时,较轻的阴离子平均会与 Li +一起向负电极移动,而只有较重的阴离子会向正电极移动。总之,基于准确的离子电迁移率以及对材料的局部结构和动力学的分析,这里揭示了熔盐中电导率的微观起源。

更新日期:2021-01-27
down
wechat
bug