当前位置: X-MOL 学术J. Lightw. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Automatic Mapping Between Real Hardware Composition and ROADM Model for Agile Node Updates
Journal of Lightwave Technology ( IF 4.1 ) Pub Date : 2020-12-31 , DOI: 10.1109/jlt.2020.3048424
Kiyo Ishii , Sugang Xu , Noboru Yoshikane , Atsuko Takefusa , Takehiro Tsuritani , Yoshinari Awaji , Shu Namiki

Swift and dynamic reconfigurability of network topology, even at the optical layer, is essential for satisfying the various requirements of future networks in diverse areas (e.g., data centers, 5G/Beyond-5G/Local-5G/6G, factory-related networks, and telecom networks) and for addressing issues arising during a disaster. Because of recent efforts to disaggregate optical transport networks, various compact disaggregate blades (e.g., wavelength selective switches and optical amplifier blades) have become commercially available. In principle, such disaggregation technology enables network operators to optimize their networks precisely at the blade level according to their distinctive needs, although the management complexity can increase with the number and diversity of the managed equipment. This paper presents transformation algorithms for mapping between a reconfigurable optical add/drop multiplexer (ROADM)-based model and a disaggregate-blade-based model to realize a flexible and agile optical physical layer based on disaggregation technology without increasing control plane complexity. In this study, a disaggregate-blade-based model named functional block-based disaggregation (FBD) is used, in which the switching functionalities of individual optical components are defined by the integer linear programming (ILP) method using machine-readable GNU MathProg modeling language. By computing the ILP formula, the switching functionalities of whole nodes/networks can be analyzed; that is, the FBD model can form the ROADM-level nodal model by aggregating the individual blade models. With the developed transformation algorithms, automated network operations, including optical path establishment/removal and node structure updates, are experimentally demonstrated on a field testbed. After physically plugging in the new components, the node structure update including the logical topology information is automatically recognized within 5 min. Multi-domain cooperative optical path recovery triggered by the update is also performed.

中文翻译:


真实硬件构成与 ROADM 模型之间的自动映射,实现敏捷节点更新



网络拓扑的快速、动态可重构性(即使是在光层)对于满足未来网络在不同领域(例如数据中心、5G/Beyond-5G/Local-5G/6G、工厂相关网络、和电信网络)以及解决灾难期间出现的问题。由于最近对分解光传输网络的努力,各种紧凑的分解刀片(例如,波长选择开关和光放大器刀片)已经变得商业化。原则上,这种分解技术使网络运营商能够根据其独特的需求在刀片级别精确优化其网络,尽管管理复杂性可能会随着受管理设备的数量和多样性而增加。本文提出了基于可重构光分插复用器(ROADM)的模型与基于分解刀片的模型之间映射的转换算法,以在不增加控制平面复杂性的情况下实现基于分解技术的灵活敏捷的光物理层。在本研究中,使用了一种名为基于功能块的分解 (FBD) 的基于分解刀片的模型,其中各个光学组件的切换功能通过使用机器可读的 GNU MathProg 建模的整数线性规划 (ILP) 方法来定义语言。通过计算ILP公式,可以分析整个节点/网络的交换功能;也就是说,FBD模型可以通过聚合各个刀片模型来形成ROADM级节点模型。利用开发的转换算法,自动化网络操作(包括光路建立/移除和节点结构更新)在现场测试台上进行了实验演示。 物理插入新组件后,5 分钟内自动识别包括逻辑拓扑信息的节点结构更新。还进行更新触发的多域协同光路恢复。
更新日期:2020-12-31
down
wechat
bug