当前位置: X-MOL 学术Geophysics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational aspects of finite-frequency traveltime inversion kernels
Geophysics ( IF 3.0 ) Pub Date : 2021-01-21 , DOI: 10.1190/geo2020-0063.1
Houzhu (James) Zhang 1 , Hong Liang 1 , Hyoungsu Baek 2 , Yang Zhao 3
Affiliation  

Finite-frequency traveltime inversion offers higher accuracy for velocity model building than ray-based traveltime inversion. The adjoint force is the key for the computation of inversion kernels. Starting at the definition of inversion kernels for the acoustic wave equation, we have derived the explicit formula for the spectral distribution density function used in the adjoint force computation. Two formulations are developed for the computation of adjoint forces for receiver-side extrapolation, frequency-domain representation, and time-domain representation. The accuracy of finite-frequency traveltime inversion kernels is benchmarked with the analytical solutions for homogeneous isotropic media. We use wavefront construction to compute the first Fresnel zones for kernel conditioning. Based on dynamic ray tracing, we design a processing procedure guided by synthetic data tests to extract the desired events for wavefield backward extrapolation from the data. Unlike ray-based velocity tomography, finite-frequency inversion can resolve the velocity structures comparable with the size of Fresnel zones as we demonstrate on a marine salt model using ocean-bottom node acquisition geometry. Despite the fact that the inversion kernels are based on Born approximation, velocities with errors up to 20% can be well-resolved. For practical purposes, a simple formulation is given for the determination of the shot spacing. Our workflow for finite-frequency inversion is efficient and converges in only very few iterations.

中文翻译:

有限频率传播时间反演内核的计算方面

有限频率的传播时间反演比基于射线的传播时间反演提供了更高的速度模型建立精度。伴随力是计算反演内核的关键。从针对声波方程的反演内核的定义开始,我们导出了用于伴随力计算的频谱分布密度函数的显式公式。开发了两种公式,用于计算接收机端外推,频域表示和时域表示的伴随力。有限频率传播时间反演内核的准确性以均质各向同性介质的解析解为基准。我们使用波前构造来计算用于内核调节的第一个菲涅耳区域。基于动态光线跟踪,我们设计了一种以合成数据测试为指导的处理程序,以从数据中提取所需事件,以进行波场向后外推。与基于射线的速度层析成像不同,正如我们在使用海底节点采集几何结构的海盐模型上所演示的那样,有限频率反演可以解析与菲涅耳带大小相当的速度结构。尽管反演内核是基于Born逼近的,但可以很好地解决误差高达20%的速度。出于实际目的,给出了确定弹丸间距的简单公式。我们的有限频率反演工作流程非常高效,并且仅需很少的迭代即可收敛。有限频率反演可以解析出与菲涅耳带大小相当的速度结构,正如我们在使用海底节点采集几何体的海盐模型上论证的那样。尽管反演内核是基于Born逼近的,但可以很好地解决误差高达20%的速度。出于实际目的,给出了确定弹丸间距的简单公式。我们的有限频率反演工作流程非常高效,并且仅需很少的迭代即可收敛。有限频率反演可以解析出与菲涅耳带大小相当的速度结构,正如我们在使用海底节点采集几何体的海盐模型上论证的那样。尽管反演内核是基于Born逼近的,但可以很好地解决误差高达20%的速度。出于实际目的,给出了确定弹丸间距的简单公式。我们的有限频率反演工作流程非常高效,并且仅需很少的迭代即可收敛。出于实际目的,给出了确定弹丸间距的简单公式。我们的有限频率反演工作流程非常高效,并且仅需很少的迭代即可收敛。出于实际目的,给出了确定弹丸间距的简单公式。我们的有限频率反演工作流程非常高效,并且仅需很少的迭代即可收敛。
更新日期:2021-01-24
down
wechat
bug