当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heat transfer in a rotating rectangular channel with impingement jet and film holes
International Journal of Thermal Sciences ( IF 4.9 ) Pub Date : 2021-01-23 , DOI: 10.1016/j.ijthermalsci.2021.106832
Jiasen Wang , Hongwu Deng , Zhi Tao , Yang Li , Jianqin Zhu

The heat transfer characteristics in a rectangular channel under rotating conditions with impingement jet and film holes was studied. The key features of the geometry are multiple impingement jets and film holes in the leading edge model. The jet Reynolds number (Rej), jet rotation number (Roj) and buoyancy number (Buo) varied from 5000 to 10,000, from 0 to 0.24, and from 0 to 0.57, respectively. Four temperature ratio (TR) cases (0.07, 0.10, 0.13, and 0.16) and three channel orientations (β = 90, 135, and 180) are selected. For all experiment cases, the spacing of jet-to-jet (s/d = 3) and jet-to-target surface (l/d = 3) were held constant. In the non-rotating cases, the heat transfer level of the T2 region (stagnation point), impinged by the jet directly, is the strongest and about twice to the other regions. The overall heat transfer distribution almost does not change significantly as the Rej varied from 5000 to 10,000. The jet rotation number plays an important role under the rotation state. For the orientation of 135°, the Coriolis force deflects the jet and weakens the heat transfer of the medium radius in the T2 region. No obvious variation in the heat transfer distribution for different temperature ratio under non-rotating and rotating cases was observed. The Coriolis force generated by different rotation directions causes two influences on the flow structure, leading to the different heat transfer distribution. The overall heat transfer level for the orientation of 90° and 135° varies little (5%) with the rotation number, while that of 180° decreases much (25%).



中文翻译:

在带有冲击射流和薄膜孔的旋转矩形通道中进行热传递

研究了在旋转条件下带有射流和薄膜孔的矩形通道内的传热特性。几何图形的关键特征是前沿模型中的多个冲击射流和薄膜孔。射流雷诺数(Re j),射流转数(Ro j)和浮力数(Buo)分别从5000到10,000,从0到0.24和从0到0.57。选择了四种温度比(TR)情况(0.07、0.10、0.13和0.16)和三种通道方向(β  = 90、135和180)。对于所有实验情况,喷射到喷射的距离(s / d  = 3)和喷射到目标表面的距离(l / d = 3)保持不变。在非旋转情况下,T2区域(停滞点)的传热水平直接受到射流的影响,是最强的,并且是其他区域的两倍。整个传热分布几乎不会随着Re j从5000到10,000。在旋转状态下,射流转数起重要作用。对于135°的方向,科里奥利力会使射流偏斜,并削弱T2区域中介质半径的传热。在非旋转和旋转情况下,不同温度比下的传热分布没有明显变化。不同旋转方向产生的科里奥利力对流动结构产生两种影响,从而导致不同的传热分布。90°和135°定向的总传热水平随转数变化不大(5%),而180°的总传热水平却下降很多(25%)。

更新日期:2021-01-24
down
wechat
bug