当前位置: X-MOL 学术Colloids Surf. A Physicochem. Eng. Aspects › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailored gentamicin release from silica nanocarriers coated with polyelectrolyte multilayers
Colloids and Surfaces A: Physicochemical and Engineering Aspects ( IF 4.9 ) Pub Date : 2021-01-24 , DOI: 10.1016/j.colsurfa.2021.126210
Yazan Al Thaher

Controlling antibiotic release kinetics is essential for effective treatment and for many biomedical applications. Herein, silica nanoparticles were prepared and loaded with gentamicin through various routes (Layer-by-layer (LbL), entrapment, adsorption). LbL coatings involved the polyelectrolytes poly(styrene sulfonate) (PSS) and Poly(allylamine hydrochloride) (PAH), where the nanoparticles coated with quadruple layers (QL) of [PSS/gentamicin/PSS/PAH]. The nanoparticles were characterized by zeta potential, transmission electron microscope (TEM) and thermogravimetric analysis (TGA). Moreover, nanoparticles' gentamicin release was tested in different release media (acetate buffer pH 5 and PBS pH 7.4). The gentamicin LbL-coated nanoparticles were successful to sustain drug release over 2 weeks. Although the entrapment method was similarly able to sustain drug release over two weeks, it showed lower drug loading when compared to the LbL-coated nanoparticles. In contrast, simple adsorption on bare silica surface resulted in significantly lower drug loading and 90 % release on day 1. The release of gentamicin showed pH-responsive behavior, with higher release at pH 5. This work demonstrates that gentamicin release from silica nanocarriers can be controlled by the different approaches for loading gentamicin. This will give different release profiles tailored for many biomedical applications such as antibiotic-loaded bone cement or implant coatings.



中文翻译:

量身定制的庆大霉素从包覆有多层聚电解质的二氧化硅纳米载体中释放

控制抗生素的释放动力学对于有效治疗和许多生物医学应用至关重要。本文中,制备了二氧化硅纳米粒子,并通过各种途径(逐层(LbL),包埋,吸附)将庆大霉素加载其中。LbL涂层涉及聚电解质聚(苯乙烯磺酸盐)(PSS)和聚(烯丙胺盐酸盐)(PAH),其中纳米颗粒涂有[PSS /庆大霉素/ PSS / PAH]的四层(QL)。纳米粒子通过ζ电位,透射电子显微镜(TEM)和热重分析(TGA)表征。此外,在不同的释放介质(乙酸缓冲液pH 5和PBS pH 7.4)中测试了纳米颗粒庆大霉素的释放。庆大霉素LbL包被的纳米颗粒成功地维持了超过2周的药物释放。尽管包埋法同样能够在两周内维持药物释放,但与包被LbL的纳米颗粒相比,它的载药量更低。相比之下,在裸露的二氧化硅表面上进行简单吸附会导致第1天的载药量大大降低,释放量为90%。庆大霉素的释放表现出pH响应行为,在pH 5时具有更高的释放。这项工作表明庆大霉素从二氧化硅纳米载体中的释放可以通过加载庆大霉素的不同方法进行控制。这将提供针对许多生物医学应用量身定制的不同释放曲线,例如抗生素加载的骨水泥或植入物涂层。在裸露的二氧化硅表面上进行简单吸附可导致第1天的载药量大大降低,释放量达到90%。庆大霉素的释放表现出pH响应行为,在pH 5时具有更高的释放。这项工作表明,庆大霉素从二氧化硅纳米载体中的释放可以通过以下方式控制庆大霉素的不同装载方法。这将提供针对许多生物医学应用量身定制的不同释放曲线,例如抗生素加载的骨水泥或植入物涂层。在裸露的二氧化硅表面上进行简单吸附可导致第1天的载药量大大降低,释放量达到90%。庆大霉素的释放表现出pH响应行为,在pH 5时具有更高的释放。这项工作表明,庆大霉素从二氧化硅纳米载体中的释放可以通过以下方式控制庆大霉素的不同装载方法。这将提供针对许多生物医学应用量身定制的不同释放曲线,例如抗生素加载的骨水泥或植入物涂层。

更新日期:2021-02-01
down
wechat
bug