当前位置: X-MOL 学术Ann. Nucl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoneutron production in heavy water reactor fuel lattice from accelerator-driven bremsstrahlung
Annals of Nuclear Energy ( IF 1.9 ) Pub Date : 2021-01-23 , DOI: 10.1016/j.anucene.2021.108141
Douglas A. Fynan , Yeseul Seo , Gitae Kim , Silvia Barros , Mi Jin Kim

The coupling of low-energy electron linear accelerators (eLINACs) to a large heavy water reactor is proposed to create an accelerator-driven photoneutron source (ADS). Photoneutron yields of 1012 pn/s per kW of beam power can be achieved in the ADS-CANDU concept where the wide fuel channel spacing of heavy water reactors represents a near-optimal geometry for conversion of accelerator-driven bremsstrahlung into photoneutrons in the heavy water moderator with minimal parasitic attenuation of photons in the fuel channels. Twenty MeV electron beam energy is most efficient at producing photoneutrons despite having the largest fuel channel shielding effect (28% attenuation compared to an infinite heavy water medium). The majority of photoneutrons are produced during source-photon first flights, so the spatial distribution and emission spectra of the ADS in the secondary (γ,n) converter are correlated to the doubly differential angle and energy distribution of the bremsstrahlung emitted from the (e-,γ) converter. Compton-scattered photons and tertiary bremsstrahlung originating from the electron–positron pair and recoil electron secondary particles are important contributors to the photoneutron yield of higher energy eLINACs systems. Photonuclear data for the deuterium photoneutron reaction cross section and secondary electron transport and tertiary bremsstrahlung production physics implemented in Monte-Carlo radiation transport codes can dominate ADS simulation results and are the same magnitude as the physical phenomena such as the fuel channel shielding effect.



中文翻译:

加速器驱动的ms致辐射在重水反应堆燃料晶格中进行光中子生产

提出将低能电子线性加速器(eLINAC)与大型重水反应堆耦合以创建加速器驱动的光中子源(ADS)。光中子的产量为10 12在ADS-CANDU概念中可以实现pn / s每kW束功率,其中重水反应堆的宽燃料通道间距代表了近似优化的几何形状,可将加速器驱动的for致辐射在重水减速器中转换为光中子,且寄生效应最小燃料通道中光子的衰减。尽管具有最大的燃料通道屏蔽效果(与无限的重水介质相比,衰减为28%),但二十MeV电子束能量最有效地产生了光中子。大部分光中子是在源光子第一次飞行期间产生的,因此次级(γ,n)转换器中ADS的空间分布和发射光谱与从(e)发射的致辐射的双微分角和能量分布相关。 -,γ)转换器。来自电子-正电子对和反冲电子次级粒子的康普顿散射光子和三次ter致辐射是高能eLINACs系统光中子产率的重要贡献者。蒙特卡罗辐射传输代码中实现的氘光中子反应截面,二次电子传输和三次致辐射生产物理的光核数据可支配ADS模拟结果,并且与物理现象(例如燃料通道屏蔽效应)的幅度相同。

更新日期:2021-01-24
down
wechat
bug