当前位置: X-MOL 学术Arab. J. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Theoretical Investigation on the Heat Transfer Ability of Water-Based Hybrid (Ag–Au) Nanofluids and Ag Nanofluids Flow Driven by Electroosmotic Pumping Through a Microchannel
Arabian Journal for Science and Engineering ( IF 2.6 ) Pub Date : 2021-01-23 , DOI: 10.1007/s13369-020-05265-0
Javaria Akram , Noreen Sher Akbar , Dharmendra Tripathi

This article explores the peristaltically regulated electroosmotic pumping of water-based hybrid (Ag–Au) nanofluids through an inclined asymmetric microfluidic channel in a porous environment. A newly developed model termed as modified Buongiorno model which studies the impact of thermophoretic and Brownian diffusion phenomenon along with the inclusion of thermophysical attributes of nanoparticles is employed to predict the heat transfer attributes. Governing equations of the present model are linearized through Debye–Hückel and lubrication linearization principle. Mathematical software Maple 17 is applied to simulate the numerical results. Salient attributes of the electroosmotic peristaltic pumping subject to various physical parameters are assessed through graphical results. Visualization of fluid flow is presented by preparing contour plots for stream function. Moreover, a comparative study for water-based hybrid (Ag–Au) nanofluid and the silver nanofluid is made. It is found that the hybridity of nanofluid facilitates to achieve a much higher heat transfer rate as compared to silver-water nanofluid and thermophysical properties are remarkably improved in the case of hybrid nanofluids. The heat transfer rate is inversely related to the size of suspended nanoparticles. Furthermore, the mechanism of heat transfer is boosted through electroosmosis by reducing the thickness of the electric double layer and applying the electric field. This model will be applicable to developing biomicrofluidics devices for drug delivery systems.



中文翻译:

电渗流通过微通道驱动的水基混合(Ag–Au)纳米流体和Ag纳米流体的传热能力的理论研究

本文探讨了在多孔环境中通过倾斜的不对称微流体通道对水基杂化(Ag–Au)纳米流体进行蠕变调节的电渗泵送过程。使用新开发的称为修正的Buongiorno模型的模型来研究热泳和布朗扩散现象的影响以及纳米颗粒的热物理属性,以预测传热属性。本模型的控制方程通过Debye-Hückel和润滑线性化原理线性化。应用数学软件Maple 17来模拟数值结果。通过图形结果评估电渗蠕动泵受到各种物理参数的影响。通过为流函数准备等高线图来呈现流体流动的可视化。此外,对水基混合(Ag-Au)纳米流体和银纳米流体进行了比较研究。发现与银-水纳米流体相比,纳米流体的杂化有助于实现更高的传热速率,并且在杂化纳米流体的情况下,热物理性质得到显着改善。传热速率与悬浮的纳米颗粒的尺寸成反比。此外,通过减小双电层的厚度并施加电场,通过电渗促进了热传递的机理。该模型将适用于开发用于药物输送系统的生物微流体装置。进行了水基混合(Ag-Au)纳米流体和银纳米流体的比较研究。发现与银-水纳米流体相比,纳米流体的杂化有助于实现更高的传热速率,并且在杂化纳米流体的情况下,热物理性质得到显着改善。传热速率与悬浮的纳米颗粒的尺寸成反比。此外,通过减小双电层的厚度并施加电场,通过电渗促进了热传递的机理。该模型将适用于开发用于药物输送系统的生物微流体装置。进行了水基混合(Ag–Au)纳米流体和银纳米流体的比较研究。发现与银-水纳米流体相比,纳米流体的杂化有助于实现更高的传热速率,并且在杂化纳米流体的情况下,热物理性质得到显着改善。传热速率与悬浮的纳米颗粒的尺寸成反比。此外,通过减小双电层的厚度并施加电场,通过电渗促进了热传递的机理。该模型将适用于开发用于药物输送系统的生物微流体装置。发现与银-水纳米流体相比,纳米流体的杂化有助于实现更高的传热速率,并且在杂化纳米流体的情况下,热物理性质得到显着改善。传热速率与悬浮的纳米颗粒的尺寸成反比。此外,通过减小双电层的厚度并施加电场,通过电渗促进了热传递的机理。该模型将适用于开发用于药物输送系统的生物微流体装置。发现与银-水纳米流体相比,纳米流体的杂化有助于实现更高的传热速率,并且在杂化纳米流体的情况下,热物理性质得到显着改善。传热速率与悬浮的纳米颗粒的尺寸成反比。此外,通过减小双电层的厚度并施加电场,通过电渗促进了热传递的机理。该模型将适用于开发用于药物输送系统的生物微流体装置。通过减小电双层的厚度并施加电场,通过电渗促进了热传递的机理。该模型将适用于开发用于药物输送系统的生物微流体装置。通过减小电双层的厚度并施加电场,通过电渗促进了热传递的机理。该模型将适用于开发用于药物输送系统的生物微流体装置。

更新日期:2021-01-24
down
wechat
bug