当前位置: X-MOL 学术J. Microelectromech. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep Etching of LiNbO₃ Using Inductively Coupled Plasma in SF₆-Based Gas Mixture
Journal of Microelectromechanical Systems ( IF 2.5 ) Pub Date : 2021-02-01 , DOI: 10.1109/jmems.2020.3039350
Artem A. Osipov 1 , Armenak A. Osipov 2 , Gleb A. Iankevich 3 , Anastasiya B. Speshilova 4 , Alexander Shakhmin 4 , Vladimir I. Berezenko 4 , Sergey E. Alexandrov 4
Affiliation  

This work is an extensive study of the plasma chemical etching (PCE) process of single-crystalline lithium niobate (LiNbO3) in the SF6/O2 based inductively coupled plasma (ICP). The influence of the main technological parameters of the LiNbO3 PCE process, including the distance between the sample and the lower edge of the discharge chamber, as well as the temperature of the substrate holder on the etching process rate, has been studied. It was shown that changing the temperature of the substrate holder in the range from 100 to 200°C leads to a gradual rise of the etching rate from 127 to 282 nm/min. A further increase in the temperature to 250°C results in a sharp increase in the etching rate to 711 nm/min. The maximum achieved etching rate in experimental series which were aimed at determining the dependence of the LiNbO3 etching rate on the temperature of the substrate holder was 812 nm/min at a substrate holder temperature of 325°C. With the help of X-ray photoelectron spectroscopy (XPS) technique was found and shown that during the etching process in fluorinated plasma the nonvolatile LiF compound is formed on the surface of the treated LiNbO3. On the basis of the obtained results, the optimal process of deep ( $> 80~\mu \text{m}$ ) LiNbO3 PCE was developed, with an etched wall inclination angle of ≈110°, with selectivity ratio to Cr mask of ≈ 20, and an etching rate of about 300 nm/min. [2020-0317]

中文翻译:

在 SF₆ 基气体混合物中使用电感耦合等离子体对 LiNbO₃ 进行深蚀刻

这项工作是对基于 SF6/O2 的电感耦合等离子体 (ICP) 中单晶铌酸锂 (LiNbO3) 的等离子体化学蚀刻 (PCE) 工艺的广泛研究。研究了LiNbO3 PCE工艺的主要工艺参数,包括样品与放电室下边缘的距离,以及基板支架的温度对蚀刻工艺速率的影响。结果表明,在 100 到 200°C 的范围内改变衬底支架的温度会导致蚀刻速率从 127 到 282 nm/min 逐渐上升。温度进一步升高到 250°C 会导致蚀刻速率急剧增加到 711 nm/min。在旨在确定 LiNbO3 蚀刻速率对衬底支架温度的依赖性的实验系列中,在 325°C 的衬底支架温度下达到的最大蚀刻速率为 812 nm/min。在 X 射线光电子能谱 (XPS) 技术的帮助下,发现并表明在氟化等离子体的蚀刻过程中,在处理过的 LiNbO3 表面上形成了非挥发性 LiF 化合物。在获得的结果的基础上,开发了深 ( $> 80~\mu \text{m}$ ) LiNbO3 PCE 的优化工艺,蚀刻壁倾角≈110°,与 Cr 掩模的选择性比为≈ 20,蚀刻速率约为 300 nm/min。[2020-0317] 在 X 射线光电子能谱 (XPS) 技术的帮助下,发现并表明在氟化等离子体的蚀刻过程中,在处理过的 LiNbO3 表面上形成了非挥发性 LiF 化合物。在获得的结果的基础上,开发了深 ( $> 80~\mu \text{m}$ ) LiNbO3 PCE 的优化工艺,蚀刻壁倾角≈110°,与 Cr 掩模的选择性比为≈ 20,蚀刻速率约为 300 nm/min。[2020-0317] 在 X 射线光电子能谱 (XPS) 技术的帮助下,发现并表明在氟化等离子体的蚀刻过程中,在处理过的 LiNbO3 表面上形成了非挥发性 LiF 化合物。在获得的结果的基础上,开发了深 ( $> 80~\mu \text{m}$ ) LiNbO3 PCE 的优化工艺,蚀刻壁倾角≈110°,与 Cr 掩模的选择性比为≈ 20,蚀刻速率约为 300 nm/min。[2020-0317] 和约300nm/min的蚀刻速率。[2020-0317] 和约300nm/min的蚀刻速率。[2020-0317]
更新日期:2021-02-01
down
wechat
bug