当前位置: X-MOL 学术IEEE J. Ocean. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal Power Allocation for MIMO Underwater Wireless Optical Communication Systems Using Channel State Information at the Transmitter
IEEE Journal of Oceanic Engineering ( IF 4.1 ) Pub Date : 2021-01-01 , DOI: 10.1109/joe.2019.2963551
S. Alireza Nezamalhosseini , Lawrence R. Chen

For multiple-input–multiple-output underwater wireless optical communication (UWOC) systems with on–off keying modulation, we obtain the optimal power allocation policies that minimize the bit error rate (BER), subject to average power constraints. In this article, we consider a comprehensive channel model that takes into account absorption, scattering, and weak turbulence-indeed lognormal fading. The optimal power allocation policies are obtained using the perfect channel state information available at the receiver (CSIR) and transmitter (CSIT) for both MISO and MIMO systems. In the MISO UWOC link, the optimal policies result in allocating the whole available power to the optical source with highest instantaneous SNR, i.e., maximum fading coefficient. In the MIMO UWOC link, the equivalent fading coefficient of the $i$th optical source is defined as the sum of the fading coefficient associated with the $i$th optical source and other receiver apertures. In this case, the total available power should be allocated to the optical source with the highest equivalent fading coefficient to have the minimum BER. Furthermore, we analytically obtain the exact BER expressions for both MISO and MIMO systems assuming the optimal power allocation. Simulation results are further provided to verify our analytical results. The results demonstrate that MIMO techniques with optimal power allocation provide better performance compared to other alternatives such as equal power allocation.

中文翻译:

使用发射机信道状态信息为 MIMO 水下无线光通信系统优化功率分配

对于具有开关键控调制的多输入多输出水下无线光通信 (UWOC) 系统,我们获得了在平均功率约束下最小化误码率 (BER) 的最佳功率分配策略。在本文中,我们考虑了一个综合信道模型,该模型考虑了吸收、散射和弱湍流——实际上是对数正态衰落。对于 MISO 和 MIMO 系统,最佳功率分配策略是使用接收机 (CSIR) 和发射机 (CSIT) 处可用的完美信道状态信息获得的。在 MISO UWOC 链路中,最优策略导致将整个可用功率分配给具有最高瞬时 SNR,即最大衰落系数的光源。在 MIMO UWOC 链路中,第i个光源的等效衰落系数定义为第i个光源和其他接收器孔径相关的衰落系数之和。在这种情况下,应将总可用功率分配给等效衰落系数最高的光源,以获得最小的误码率。此外,我们通过分析获得 MISO 和 MIMO 系统的准确 BER 表达式,假设最优功率分配。进一步提供了仿真结果以验证我们的分析结果。结果表明,与其他替代方案(例如等功率分配)相比,具有最佳功率分配的 MIMO 技术可提供更好的性能。总可用功率应分配给等效衰落系数最高的光源,以获得最小的误码率。此外,我们通过分析获得 MISO 和 MIMO 系统的准确 BER 表达式,假设最优功率分配。进一步提供了仿真结果以验证我们的分析结果。结果表明,与其他替代方案(例如等功率分配)相比,具有最佳功率分配的 MIMO 技术可提供更好的性能。总可用功率应分配给等效衰落系数最高的光源,以获得最小的误码率。此外,我们通过分析获得 MISO 和 MIMO 系统的准确 BER 表达式,假设最优功率分配。进一步提供了仿真结果以验证我们的分析结果。结果表明,与其他替代方案(例如等功率分配)相比,具有最佳功率分配的 MIMO 技术可提供更好的性能。
更新日期:2021-01-01
down
wechat
bug