当前位置: X-MOL 学术Polym. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
(Nano)Fibrillar morphology development in biobased poly(butylene succinate‐co‐adipate)/poly(amide‐11) blown films
Polymer Engineering and Science ( IF 3.2 ) Pub Date : 2021-01-21 , DOI: 10.1002/pen.25645
Tarek Dadouche 1 , Mohamed Yousfi 2 , Cédric Samuel 1 , Marie‐France Lacrampe 1 , Jérémie Soulestin 1
Affiliation  

Thin films with (nano)fibrillar morphologies were successfully obtained in fully‐biobased poly(butylene succinate‐co‐adipate)/poly(amide‐11) blends (PBSA/PA11, 85/15 wt/wt) using an extrusion‐blowing process. Impacts of PA11 grade and take‐up ratio on the morphology of PBSA/PA11 were particularly highlighted. Scanning electron microscopy analyses indicated that PA11 with high melt volume‐flow rates are beneficial to the development of (nano)fibrillar morphologies in PBSA/PA11 blown film. On the contrary, unstable film blowing processing without fibrillar morphologies was attested for PA11 with low melt volume‐flow rates. Increasing the take‐up ratio during extrusion‐blowing of PBSA/PA11 clearly generates finer PA11 (nano)fibrils into PBSA. Fibril diameters down to 300 nm could be reached with an optimal PA11 grade promoting enhanced mechanical properties (higher ductility and toughness). The formation of stable PA11 (nano)fibrils into PBSA is discussed via rheological assessments of viscosity/elasticity ratio. A specific attention was finally paid to the PBSA strain‐hardening behavior in PBSA/PA11 using elongational rheological tests. PA11 (nano)fibrillation helps maintaining the strong PBSA strain‐hardening and thus play a major role on the processability of PBSA/PA11 blends by extrusion blowing. As a conclusion, the PA11 grade represents a crucial parameter to control the production of PBSA/PA11 blown films with refined (nano)fibrillar structures and enhanced physico‐chemical properties.

中文翻译:

(纳米)生物基聚丁二酸丁二酯/己二酸丁二酯/聚酰胺-11吹塑薄膜中的原纤维形态发展

使用挤出吹塑工艺在全生物基聚丁二酸丁二酸酯/共己二酸酯/聚(酰胺-11)共混物(PBSA / PA11,85/15 wt / wt)中成功获得具有(纳米)原纤维形态的薄膜。特别强调了PA11品位和摄取比例对PBSA / PA11形态的影响。扫描电子显微镜分析表明,具有高熔体体积流率的PA11有利于PBSA / PA11吹塑薄膜中(纳米)原纤维形态的发展。相反,对于熔体体积流量低的PA11,证明了没有原纤形态的不稳定的吹膜工艺。在PBSA / PA11挤出吹塑过程中增加卷取比显然会产生更细的PA11(纳米)原纤维进入PBSA。最佳PA11级可达到低至300 nm的原纤维直径,从而可增强机械性能(更高的延展性和韧性)。通过流变学评估粘度/弹性比,讨论了稳定的PA11(纳米)原纤维向PBSA的形成。最后,使用伸长流变学测试对PBSA / PA11中的PBSA应变硬化行为给予了特别的关注。PA11(纳米)原纤化有助于保持PBSA的强应变硬化,因此在通过挤出吹塑对PBSA / PA11共混物的可加工性中起主要作用。结论是,PA11等级是控制具有精制(纳米)原纤维结构和增强的理化性能的PBSA / PA11吹塑薄膜生产的关键参数。通过流变学评估粘度/弹性比,讨论了稳定的PA11(纳米)原纤维向PBSA的形成。最后,使用伸长流变学测试对PBSA / PA11中的PBSA应变硬化行为给予了特别的关注。PA11(纳米)原纤化有助于保持PBSA的强应变硬化,因此在通过挤出吹塑对PBSA / PA11共混物的可加工性中起主要作用。结论是,PA11等级是控制具有精制(纳米)原纤维结构和增强的理化性能的PBSA / PA11吹塑薄膜生产的关键参数。通过流变学评估粘度/弹性比,讨论了稳定的PA11(纳米)原纤维向PBSA的形成。最后,使用伸长流变学测试对PBSA / PA11中的PBSA应变硬化行为给予了特别的关注。PA11(纳米)原纤化有助于保持PBSA的强应变硬化,因此在通过挤出吹塑对PBSA / PA11共混物的可加工性中起主要作用。结论是,PA11等级是控制具有精制(纳米)原纤维结构和增强的理化性能的PBSA / PA11吹塑薄膜生产的关键参数。PA11(纳米)原纤化有助于保持PBSA的强应变硬化,因此在通过挤出吹塑对PBSA / PA11共混物的可加工性中起主要作用。结论是,PA11等级是控制具有精制(纳米)原纤维结构和增强的理化性能的PBSA / PA11吹塑薄膜生产的关键参数。PA11(纳米)原纤化有助于保持PBSA的强应变硬化,因此在通过挤出吹塑对PBSA / PA11共混物的可加工性中起主要作用。结论是,PA11等级是控制具有精制(纳米)原纤维结构和增强的理化性能的PBSA / PA11吹塑薄膜生产的关键参数。
更新日期:2021-01-21
down
wechat
bug