当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale Assembly of [AgS4] Tetrahedrons into Hierarchical Ag–S Networks for Robust Photonic Water
Advanced Materials ( IF 27.4 ) Pub Date : 2021-01-21 , DOI: 10.1002/adma.202006459
Zhennan Wu 1 , Qiaofeng Yao 1 , Zhihe Liu 2 , Hongyi Xu 3 , Peng Guo 4 , Lingmei Liu 5 , Yu Han 5 , Kuo Zhang 6 , Zhongyuan Lu 6 , Xuke Li 7 , Jiangwei Zhang 8 , Jianping Xie 1, 2
Affiliation  

There is an urgent need to assemble ultrasmall metal chalcogenides (with atomic precision) into functional materials with the required anisotropy and uniformity, on a micro‐ or even macroscale. Here, a delicate yet simple chemistry is developed to produce a silver–sulfur network microplate with a high monodispersity in size and morphology. Spanning from the atomic, molecular, to nanometer, to micrometer scale, the key structural evolution of the obtained microplates includes 2D confinement growth, edge‐sharing growth mode, and thermodynamically driven layer‐by‐layer stacking, all of which are derived from the [AgS4] tetrahedron unit. The key to such a high hierarchical, complex, and accurate assembly is the dense deprotonated ligand layer on the surface of the microplates, forming an infinite surface with high negative charge density. This feature operates at an orderly distance to allow further hierarchical self‐assembly on the microscale to generate columnar assemblies composed of microplate components, thereby endowing the feature of the 1D photonic reflector to water (i.e., photonic water). The reflective color of the resulting photonic water is highly dependent on the thickness of the building blocks (i.e., silver–sulfur microplates), and the coexistent order and fluidity help to form robust photonic water.

中文翻译:

[AgS4]四面体的多尺度组装成用于稳定光子水的分级Ag-S网络

迫切需要将超小型金属硫属元素化物(具有原子精度)组装成具有所需的各向异性和均匀性的功能材料,甚至可以在微观甚至宏观尺度上进行。在这里,开发了一种精细而简单的化学方法来生产尺寸大小和形态均具有高度单分散性的银-硫网络微孔板。从原子,分子到纳米,再到微米,所获得的微孔板的关键结构演变包括二维限制生长,边缘共享生长模式以及热力学驱动的逐层堆叠,所有这些都源自于[AgS 4]四面体单元。如此高层次,复杂和准确组装的关键是微孔板表面上密集的去质子化配体层,形成具有高负电荷密度的无限表面。此功能以有序的距离操作,以允许在微尺度上进一步分层自组装,以生成由微孔板组件组成的柱状组件,从而使一维光子反射器的功能赋予水(即光子水)。所产生的光子水的反射颜色高度依赖于构造块(即,银硫微板)的厚度,同时存在的有序性和流动性有助于形成坚固的光子水。
更新日期:2021-02-22
down
wechat
bug