当前位置: X-MOL 学术Nucl. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of in-vessel gap cooling and its validation against LAVA, ALPHA, and LMP200 experiments
Nuclear Engineering and Design ( IF 1.9 ) Pub Date : 2021-01-21 , DOI: 10.1016/j.nucengdes.2020.111028
Moon Won Song , Dongyeol Yeo , Hee Cheon No

The gap cooling phenomenon is a key issue to explain why the 19 tons of melt retained in the RPV lower head in the TMI accident did not significantly damage the vessel. This study developed the model for gap cooling phenomenon and was validated against the several gap cooling experiments with 30 kg, 50 kg, 70 kg of Al2O3 melt (LAVA and ALPHA experiments), and 220 kg and 360 kg of Al2O3 + Fe melt (LMP200 experiments). To estimate the thermal behavior of the vessel during the gap cooling, we modeled heat transfer from the melt and crust to the vessel and heat removal by water penetrating the gap. The gap size which determines the flow rate of water penetrating the gap was evaluated considering thermal interaction between the melt and water; Inverse-Leidenfrost effect, thermal fracture of the crust, thermal deformations of crust and vessel. In addition, a three-regime model widely used to analyze quenching heat transfer was applied to simplify the calculation compared to the calculation with the boiling curve of previous studies. A sensitivity study for the discretization dimension of the vessel showed that the 1D calculation can substitute the 2D calculation for analyzing the gap cooling experiments. From the sensitivity study, the node size and the time step were proposed as 3 mm and 0.1 s to obtain converged results. Through the extensive validation against the gap cooling experiments with the large-scaled melt mass to 360 kg (LMP200 experiments) as well as the small-scaled melt mass of 30, 50 kg of melt (LAVA and ALPHA experiments), we introduced the correction factors which account for the uncertainties of the degree of local contacts between the melt and reactor vessel and the effect of the solidified debris penetration in the gap on CCFL. We found out that the current model predicted the peak temperatures and the peak times with the error ranges of −15 ~ 15% and −50 ~ 70%, respectively. Finally, the current model was compared with other gap cooling calculation codes.



中文翻译:

容器内间隙冷却的建模及其针对LAVA,ALPHA和LMP200实验的验证

间隙冷却现象是一个关键问题,可以解释为什么在TMI事故中保留在RPV下缸盖中的19吨熔体没有显着损坏容器。这项研究开发了间隙冷却现象的模型,并针对30 kg,50 kg,70 kg Al 2 O 3熔体(LAVA和ALPHA实验)以及220 kg和360 kg Al 2 O的几个间隙冷却实验进行了验证。3 +铁熔体(LMP200实验)。为了估计间隙冷却期间容器的热行为,我们对从熔体和硬壳到容器的传热以及通过水渗透间隙的热量进行了建模。考虑到熔体和水之间的热相互作用,评估确定间隙中水流速的间隙尺寸。反Leidenfrost效应,地壳的热断裂,地壳和容器的热变形。另外,与先前研究的沸腾曲线计算相比,采用了广泛用于分析淬火传热的三区域模型来简化计算。对容器离散化尺寸的敏感性研究表明,一维计算可以代替二维计算来分析间隙冷却实验。根据敏感性研究,节点大小和时间步长建议为3 mm和0.1 s,以获得收敛的结果。通过针对间隙冷却实验的广泛验证(大型熔体质量达到360 kg)(LMP200实验)以及小型熔体质量为30、50 kg熔体(LAVA和ALPHA实验),我们引入了校正方法这些因素解释了熔体与反应堆容器之间局部接触程度的不确定性以及间隙中凝固的碎屑渗透对CCFL的影响。我们发现,当前模型预测的峰值温度和峰值时间的误差范围分别为-15〜15%和-50〜70%。最后,将当前模型与其他间隙冷却计算代码进行了比较。通过针对间隙冷却实验的广泛验证(大型熔体质量达到360 kg)(LMP200实验)以及小型熔体质量为30、50 kg熔体(LAVA和ALPHA实验),我们引入了校正方法这些因素解释了熔体与反应堆容器之间局部接触程度的不确定性以及间隙中凝固的碎屑渗透对CCFL的影响。我们发现,当前模型预测的峰值温度和峰值时间的误差范围分别为-15〜15%和-50〜70%。最后,将当前模型与其他间隙冷却计算代码进行了比较。通过针对间隙冷却实验的广泛验证,该实验采用大型熔体质量达到360 kg(LMP200实验)以及小型熔体质量为30、50 kg熔体(LAVA和ALPHA实验),这些因素解释了熔体与反应堆容器之间局部接触程度的不确定性以及间隙中凝固的碎屑渗透对CCFL的影响。我们发现,当前模型预测的峰值温度和峰值时间的误差范围分别为-15〜15%和-50〜70%。最后,将当前模型与其他间隙冷却计算代码进行了比较。50公斤的熔体(LAVA和ALPHA实验),我们引入了校正因子,这些校正因子说明了熔体与反应堆容器之间的局部接触程度的不确定性以及间隙中凝固的碎屑渗透对CCFL的影响。我们发现,当前模型预测的峰值温度和峰值时间的误差范围分别为-15〜15%和-50〜70%。最后,将当前模型与其他间隙冷却计算代码进行了比较。50公斤的熔体(LAVA和ALPHA实验),我们引入了校正因子,这些校正因子说明了熔体与反应堆容器之间的局部接触程度的不确定性以及间隙中凝固的碎屑渗透对CCFL的影响。我们发现,当前模型预测的峰值温度和峰值时间的误差范围分别为-15〜15%和-50〜70%。最后,将当前模型与其他间隙冷却计算代码进行了比较。分别。最后,将当前模型与其他间隙冷却计算代码进行了比较。分别。最后,将当前模型与其他间隙冷却计算代码进行了比较。

更新日期:2021-01-22
down
wechat
bug