当前位置: X-MOL 学术Biomass Convers. Biorefin. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency
Biomass Conversion and Biorefinery ( IF 3.5 ) Pub Date : 2021-01-21 , DOI: 10.1007/s13399-021-01291-6
Danielly C. I. Martarello , Aline M. Almeida , Renata C. Sinzker , Dyoni M. Oliveira , Rogério Marchiosi , Wanderley D. dos Santos , Osvaldo Ferrarese-Filho

Biofuels produced from lignocellulosic biomass provide energy security and reduce greenhouse gas emissions with positive impacts on sustainability. Lignocellulose byproducts are expected to impact the production of cellulosic ethanol. However, lignin is a major factor imposing biomass recalcitrance to saccharification. Although structural phenolics can be removed from lignocellulosic biomass, physical and chemical pretreatments are expensive. In turn, the structure and composition of lignin is very flexible. Up- and downregulation of genes and, thereby, enzymes involved in core and non-core lignin biosynthesis can reduce lignin content and improve biomass saccharification. Alternatively, insertion of heterologous genes to the phenylpropanoid pathway may lead to the incorporation of alternative monomers into lignin, creating desirable properties and preserving the biological roles of lignin with a positive effect on saccharification. Studies reporting the effect of fine regulation on lignin structures are mapping how plants can be transformed to enhance saccharification while preserving productivity. Based on these findings and events, this review updates the state-of-art changes in lignin biosynthesis to improve saccharification efficiency. The main findings reported over the last decade were summarized to permit researchers an overview of this relevant scientific subject.



中文翻译:

木质素生物合成的已知未知数及其提高木质纤维素糖化效率的工程

木质纤维素生物质生产的生物燃料可提供能源安全并减少温室气体排放,对可持续性产生积极影响。木质纤维素副产物有望影响纤维素乙醇的生产。但是,木质素是强加生物质不耐糖化的主要因素。尽管可以从木质纤维素生物质中去除结构酚类,但物理和化学预处理非常昂贵。反过来,木质素的结构和组成非常灵活。基因的上调和下调,以及因此参与核心和非核心木质素生物合成的酶,可以降低木质素含量并改善生物质糖化作用。或者,将异源基因插入苯基丙烷途径可能会导致将其他单体掺入木质素中,产生理想的特性并保持木质素的生物作用,对糖化具有积极作用。报道了精细调节对木质素结构的影响的研究正在绘制如何转化植物以增强糖化作用同时保持生产率的图。基于这些发现和事件,本综述更新了木质素生物合成的最新变化,以提高糖化效率。总结了过去十年中报告的主要发现,以使研究人员可以对这一相关的科学主题进行概述。基于这些发现和事件,本综述更新了木质素生物合成的最新变化,以提高糖化效率。总结了过去十年中报告的主要发现,以使研究人员可以对这一相关的科学主题进行概述。基于这些发现和事件,本综述更新了木质素生物合成的最新变化,以提高糖化效率。总结了过去十年中报告的主要发现,以使研究人员可以对这一相关的科学主题进行概述。

更新日期:2021-01-22
down
wechat
bug