当前位置: X-MOL 学术Part. Fibre Toxicol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lung retention and particokinetics of silver and gold nanoparticles in rats following subacute inhalation co-exposure
Particle and Fibre Toxicology ( IF 7.2 ) Pub Date : 2021-01-21 , DOI: 10.1186/s12989-021-00397-z
Jin Kwon Kim 1 , Hoi Pin Kim 2 , Jung Duck Park 3 , Kangho Ahn 1 , Woo Young Kim 1 , Mary Gulumian 4, 5, 6 , Günter Oberdörster 7 , Il Je Yu 2, 8
Affiliation  

Inhalation exposure to nanomaterials in workplaces can include a mixture of multiple nanoparticles. Such ambient nanoparticles can be of high dissolution or low dissolution in vivo and we wished to determine whether co-exposure to particles with different dissolution rates affects their biokinetics. Rats were exposed to biosoluble silver nanoparticles (AgNPs, 10.86 nm) and to biopersistent gold nanoparticles (AuNPs, 10.82 nm) for 28 days (6-h/day, 5-days/week for 4 weeks) either with separate NP inhalation exposures or with combined co-exposure. The separate NPs mass concentrations estimated by the differential mobility analyzer system (DMAS) were determined to be 17.68 ± 1.69 μg/m3 for AuNP and 10.12 ± 0.71 μg/m3 for AgNP. In addition, mass concentrations analyzed by atomic absorption spectrometer (AAS) via filter sampling were for AuNP 19.34 ± 2.55 μg/m3 and AgNP 17.38 ± 1.88 μg/m3 for separate exposure and AuNP 8.20 ± 1.05 μg/m3 and AgNP 8.99 ± 1.77 μg/m3 for co-exposure. Lung retention and clearance were determined on day 1 (6-h) of exposure (E-1) and on post-exposure days 1, 7, and 28 (PEO-1, PEO-7, and PEO-28, respectively). While the AgNP and AuNP deposition rates were determined to be similar due to the similarity of NP size of both aerosols, the retention half-times and clearance rates differed due to the difference in dissolution rates. Thus, when comparing the lung burdens following separate exposures, the AgNP retention was 10 times less than the AuNP retention at 6-h (E-1), and 69, 89, and 121 times lower less than the AuNP retention at PEO-1, PEO-7, and PEO-28, respectively. In the case of AuNP+AgNP co-exposure, the retained AgNP lung burden was 14 times less than the retained AuNP lung burden at E-1, and 26, 43, and 55 times less than the retained AuNP lung burden at PEO-1, PEO-7, and PEO-28, respectively. The retention of AuNP was not affected by the presence of AgNP, but AgNP retention was influenced in the presence of AuNP starting at 24 h after the first day of post day of exposure. The clearance of AgNPs of the separate exposure showed 2 phases; fast (T1/2 3.1 days) and slow (T1/2 48.5 days), while the clearance of AuNPs only showed one phase (T1/2 .81.5 days). For the co-exposure of AuNPs+AgNPs, the clearance of AgNPs also showed 2 phases; fast (T1/2 2.2 days) and slow (T1/2 28.4 days), while the clearance of AuNPs consistently showed one phase (T1/2 54.2 days). The percentage of Ag lung burden in the fast and slow clearing lung compartment was different between separate and combined exposure. For the combined exposure, the slow and fast compartments were each 50% of the lung burden. For the single exposure, 1/3 of the lung burden was cleared by the fast rate and 2/3 of the lung burden by the slow rate. The clearance of AgNPs follows a two- phase model of fast and slow dissolution rates while the clearance of AuNPs could be described by a one- phase model with a longer half-time. The co-exposure of AuNPs+AgNPs showed that the clearance of AgNPs was altered by the presence of AuNPs perhaps due to some interaction between AgNP and AuNP affecting dissolution and/or mechanical clearance of AgNP in vivo.

中文翻译:

亚急性吸入共同暴露后银和金纳米颗粒在大鼠肺中的滞留和颗粒动力学

在工作场所吸入接触纳米材料可能包括多种纳米颗粒的混合物。这种环境纳米颗粒在体内可以具有高溶解度或低溶解度,我们希望确定与具有不同溶解速率的颗粒共同接触是否会影响它们的生物动力学。大鼠暴露于生物可溶性银纳米粒子 (AgNPs, 10.86 nm) 和生物持久性金纳米粒子 (AuNPs, 10.82 nm) 28 天(6 小时/天,5 天/周,持续 4 周),单独吸入 NP 或结合共同曝光。由差分迁移率分析仪系统 (DMAS) 估计的单独 NP 质量浓度确定为 AuNP 的 17.68 ± 1.69 μg/m3 和 AgNP 的 10.12 ± 0.71 μg/m3。此外,原子吸收光谱仪 (AAS) 通过过滤采样分析的质量浓度为 AuNP 19.34 ± 2。55 μg/m3 和 AgNP 17.38 ± 1.88 μg/m3 用于单独暴露,AuNP 8.20 ± 1.05 μg/m3 和 AgNP 8.99 ± 1.77 μg/m3 用于共同暴露。在暴露 (E-1) 的第 1 天(6 小时)和暴露后的第 1、7 和 28 天(分别为 PEO-1、PEO-7 和 PEO-28)测定肺保留和清除率。虽然由于两种气溶胶的 NP 尺寸相似,AgNP 和 AuNP 的沉积速率被确定为相似,但由于溶解速率的差异,保留半衰期和清除率不同。因此,当比较单独暴露后的肺负荷时,AgNP 保留比 6 小时 (E-1) 的 AuNP 保留少 10 倍,比 PEO-1 的 AuNP 保留少 69、89 和 121 倍、PEO-7 和 PEO-28。在 AuNP+AgNP 共暴露的情况下,残留的 AgNP 肺负荷比 E-1 时残留的 AuNP 肺负荷少 14 倍,分别比 PEO-1、PEO-7 和 PEO-28 时残留的 AuNP 肺负荷少 26、43 和 55 倍. AuNP 的保留不受 AgNP 存在的影响,但在 AuNP 存在的情况下,AgNP 保留在暴露后第一天后 24 小时开始受到影响。单独暴露的 AgNPs 的清除显示出 2 个阶段;快(T1/2 3.1 天)和慢(T1/2 48.5 天),而 AuNPs 的清除仅显示一个阶段(T1/2 .81.5 天)。对于AuNPs+AgNPs的共暴露,AgNPs的清除也呈现出2个阶段;快(T1/2 2.2 天)和慢(T1/2 28.4 天),而 AuNPs 的清除始终显示一个阶段(T1/2 54.2 天)。快速和慢速清除肺隔室中银肺负荷的百分比在单独暴露和组合暴露之间不同。对于联合暴露,慢速室和快速室各占肺负荷的​​ 50%。对于单次暴露,1/3的肺负荷被快速清除,2/3的肺负荷被慢速清除。AgNPs 的清除遵循快速和缓慢溶解速率的两相模型,而 AuNPs 的清除可以通过具有较长半衰期的单相模型来描述。AuNPs+AgNPs 的共同暴露表明,AgNPs 的清除因 AuNPs 的存在而改变,这可能是由于 AgNP 和 AuNP 之间的一些相互作用影响了体内 AgNP 的溶解和/或机械清除。慢速室和快速室各占肺负荷的​​ 50%。对于单次暴露,1/3的肺负荷被快速清除,2/3的肺负荷被慢速清除。AgNPs 的清除遵循快速和缓慢溶解速率的两相模型,而 AuNPs 的清除可以通过具有较长半衰期的单相模型来描述。AuNPs+AgNPs 的共同暴露表明,AgNPs 的清除因 AuNPs 的存在而改变,这可能是由于 AgNP 和 AuNP 之间的一些相互作用影响了体内 AgNP 的溶解和/或机械清除。慢速室和快速室各占肺负荷的​​ 50%。对于单次暴露,1/3的肺负荷被快速清除,2/3的肺负荷被慢速清除。AgNPs 的清除遵循快速和缓慢溶解速率的两相模型,而 AuNPs 的清除可以通过具有较长半衰期的单相模型来描述。AuNPs+AgNPs 的共同暴露表明,AgNPs 的清除因 AuNPs 的存在而改变,这可能是由于 AgNP 和 AuNP 之间的一些相互作用影响了体内 AgNP 的溶解和/或机械清除。AgNPs 的清除遵循快速和缓慢溶解速率的两相模型,而 AuNPs 的清除可以通过具有较长半衰期的单相模型来描述。AuNPs+AgNPs 的共同暴露表明,AgNPs 的清除因 AuNPs 的存在而改变,这可能是由于 AgNP 和 AuNP 之间的一些相互作用影响了体内 AgNP 的溶解和/或机械清除。AgNPs 的清除遵循快速和缓慢溶解速率的两相模型,而 AuNPs 的清除可以通过具有较长半衰期的单相模型来描述。AuNPs+AgNPs 的共同暴露表明,AgNPs 的清除因 AuNPs 的存在而改变,这可能是由于 AgNP 和 AuNP 之间的一些相互作用影响了体内 AgNP 的溶解和/或机械清除。
更新日期:2021-01-21
down
wechat
bug