当前位置: X-MOL 学术bioRxiv. Plant Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low photorespiratory capacity is sufficient to block the induction of photosynthetic capacity in high light
bioRxiv - Plant Biology Pub Date : 2021-02-22 , DOI: 10.1101/2021.01.20.427534
Christopher R. Baker , Jean Christophe Cocurrun , Ana Paula Alonso , Krishna K. Niyogi

The induction of high photosynthetic capacity in high light (HL) is a common response among many herbaceous dicot plants, however, the signals that control this response remain largely unknown. Here, multiple independent lines of evidence are presented in support of the conclusion that low photorespiratory capacity acts a negative signal to limit photosynthetic capacity acclimation in HL in Arabidopsis thaliana. Using a panel of natural accessions, primary nitrogen (N) assimilation and photorespiration rates early after a shift to growth in HL, as well as activities for key enzymes in these pathways, were shown to positively correlate with the magnitude of the subsequent induction of photosynthetic capacity, which occurred several days later. Time-resolved metabolomic data during acclimation to HL were collected using a strongly acclimating ecotype and a weakly acclimating ecotype, revealing in greater detail the differences in N assimilation, photorespiration, and triose-phosphate utilization pathways underlying efficient photosynthetic capacity acclimation. When shifted into HL growth conditions under non-photorespiratory conditions, weakly acclimating ecotypes and even photorespiratory mutants gained the ability to strongly induce high photosynthetic capacity in HL. Thus, a negative, photorespiration-dependent signal early in the HL shift appears to block photosynthetic capacity acclimation in accessions with low photorespiratory capacity, whereas accessions with high photorespiratory capacity are licensed to increase photosynthetic capacity.

中文翻译:

低光呼吸能力足以阻止高光下光合能力的诱导

高光(HL)中高光合能力的诱导是许多草本双子叶植物中常见的响应,但是,控制该响应的信号仍然未知。在这里,提出了多个独立的证据来支持这样的结论,即光呼吸能力低会抑制拟南芥HL中光合能力的适应,从而产生负信号。使用一组天然材料,显示了HL迁移到生长后早期的初级氮(N)同化和光呼吸速率以及这些途径中关键酶的活性与随后光合作用的诱导程度呈正相关。容量,发生在几天后。使用强适应性生态型和弱适应性生态型收集了HL适应过程中的时间分辨代谢组学数据,更详细地揭示了有效吸收光合能力所基于的N同化,光呼吸和三糖磷利用途径的差异。当在非光呼吸条件下转入HL生长条件时,适应能力较弱的生态型甚至是光呼吸突变体都具有强烈诱导HL高光合能力的能力。因此,HL移位早期的负性,依赖光呼吸的信号似乎会阻止低光呼吸能力的种质的光合能力适应,而高光呼吸能力的种质则被许可增加光合能力。更详细地揭示了有效吸收光合能力所基于的N同化,光呼吸和磷酸三糖磷酸利用途径的差异。当在非光呼吸条件下转入HL生长条件时,适应能力较弱的生态型甚至是光呼吸突变体都具有强烈诱导HL高光合能力的能力。因此,HL移位早期的负性,依赖光呼吸的信号似乎会阻止低光呼吸能力的种质的光合能力适应,而高光呼吸能力的种质则被许可增加光合能力。更详细地揭示了有效吸收光合能力所基于的N同化,光呼吸和磷酸三糖磷酸利用途径的差异。当在非光呼吸条件下转入HL生长条件时,适应能力较弱的生态型甚至是光呼吸突变体都具有强烈诱导HL高光合能力的能力。因此,HL移位早期的负性,依赖光呼吸的信号似乎会阻止低光呼吸能力的种质的光合能力适应,而高光呼吸能力的种质则被许可增加光合能力。当在非光呼吸条件下转入HL生长条件时,适应能力较弱的生态型甚至是光呼吸突变体都具有强烈诱导HL高光合能力的能力。因此,HL移位早期的负性,依赖光呼吸的信号似乎会阻止低光呼吸能力的种质的光合能力适应,而高光呼吸能力的种质则被许可增加光合能力。当在非光呼吸条件下转入HL生长条件时,适应能力较弱的生态型甚至是光呼吸突变体都具有强烈诱导HL高光合能力的能力。因此,HL移位早期的负性,依赖光呼吸的信号似乎会阻止低光呼吸能力的种质的光合能力适应,而高光呼吸能力的种质则被许可增加光合能力。
更新日期:2021-02-22
down
wechat
bug