当前位置: X-MOL 学术arXiv.cs.IT › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effective Energy Efficiency of Ultra-reliable Low Latency Communication
arXiv - CS - Information Theory Pub Date : 2021-01-20 , DOI: arxiv-2101.08129
Mohammad Shehab, Hirley Alves, Eduard A. Jorswieck, Endrit Dosti, Matti Latva-aho

Effective Capacity defines the maximum communication rate subject to a specific delay constraint, while effective energy efficiency (EEE) indicates the ratio between effective capacity and power consumption. We analyze the EEE of ultra-reliable networks operating in the finite blocklength regime. We obtain a closed form approximation for the EEE in quasi-static Nakagami-$m$ (and Rayleigh as sub-case) fading channels as a function of power, error probability, and latency. Furthermore, we characterize the QoS constrained EEE maximization problem for different power consumption models, which shows a significant difference between finite and infinite blocklength coding with respect to EEE and optimal power allocation strategy. As asserted in the literature, achieving ultra-reliability using one transmission consumes huge amount of power, which is not applicable for energy limited IoT devices. In this context, accounting for empty buffer probability in machine type communication (MTC) and extending the maximum delay tolerance jointly enhances the EEE and allows for adaptive retransmission of faulty packets. Our analysis reveals that obtaining the optimum error probability for each transmission by minimizing the non-empty buffer probability approaches EEE optimality, while being analytically tractable via Dinkelbach's algorithm. Furthermore, the results illustrate the power saving and the significant EEE gain attained by applying adaptive retransmission protocols, while sacrificing a limited increase in latency.

中文翻译:

超可靠的低延迟通信的有效能效

有效容量定义了受特定延迟约束的最大通信速率,而有效能效(EEE)表示有效容量与功耗之间的比率。我们分析了在有限块长体制下运行的超可靠网络的EEE。我们在准静态Nakagami- $ m $(以Rayleigh为子情况)衰落信道中获得EEE的封闭形式近似,它是功率,错误概率和等待时间的函数。此外,我们描述了针对不同功耗模型的QoS约束EEE最大化问题,这表明有限块长度编码和无限块长度编码在EEE和最佳功率分配策略之间存在显着差异。正如文献所断言的那样,使用一种变速箱实现超可靠性会消耗大量动力,不适用于能耗受限的IoT设备。在这种情况下,考虑机器类型通信(MTC)中的空缓冲区概率并扩展最大延迟容忍度共同增强了EEE,并允许对故障数据包进行自适应重传。我们的分析表明,通过最小化非空缓冲区概率来获得每次传输的最佳错误概率接近EEE最优性,同时可以通过Dinkelbach算法进行分析处理。此外,结果说明了通过应用自适应重传协议可以节省功率并实现显着的EEE增益,同时牺牲了延迟的有限增加。考虑到机器类型通信(MTC)中的空缓冲区概率并扩展最大延迟容忍度共同增强了EEE,并允许对故障数据包进行自适应重传。我们的分析表明,通过最小化非空缓冲区概率来获得每次传输的最佳错误概率接近EEE最优性,同时可以通过Dinkelbach算法进行分析处理。此外,结果说明了通过应用自适应重传协议可以节省功率并实现显着的EEE增益,同时牺牲了延迟的有限增加。考虑到机器类型通信(MTC)中的空缓冲区概率并扩展最大延迟容忍度共同增强了EEE,并允许对故障数据包进行自适应重传。我们的分析表明,通过最小化非空缓冲区概率来获得每次传输的最佳错误概率接近EEE最优性,同时可以通过Dinkelbach算法进行分析处理。此外,结果说明了通过应用自适应重传协议可以节省功率并实现显着的EEE增益,同时牺牲了延迟的有限增加。我们的分析表明,通过最小化非空缓冲区概率来获得每次传输的最佳错误概率接近EEE最优性,同时可以通过Dinkelbach算法进行分析处理。此外,结果说明了通过应用自适应重传协议可以节省功率并实现显着的EEE增益,同时牺牲了延迟的有限增加。我们的分析表明,通过最小化非空缓冲区概率来获得每次传输的最佳错误概率接近EEE最优性,同时可以通过Dinkelbach算法进行分析处理。此外,结果说明了通过应用自适应重传协议可以节省功率并实现显着的EEE增益,同时牺牲了延迟的有限增加。
更新日期:2021-01-21
down
wechat
bug