当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient, stabilized two-qubit gates on a trapped-ion quantum computer
arXiv - CS - Emerging Technologies Pub Date : 2021-01-19 , DOI: arxiv-2101.07887
Reinhold Blümel, Nikodem Grzesiak, Nhung H. Nguyen, Alaina M. Green, Ming Li, Andrii Maksymov, Norbert M. Linke, Yunseong Nam

Quantum computing is currently limited by the cost of two-qubit entangling operations. In order to scale up quantum processors and achieve a quantum advantage, it is crucial to economize on the power requirement of two-qubit gates, make them robust to drift in experimental parameters, and shorten the gate times. In this paper, we present two methods, one exact and one approximate, to construct optimal pulses for entangling gates on a pair of ions within a trapped ion chain, one of the leading quantum computing architectures. Our methods are direct, non-iterative, and linear, and can construct gate-steering pulses requiring less power than the standard method by more than an order of magnitude in some parameter regimes. The power savings may generally be traded for reduced gate time and greater qubit connectivity. Additionally, our methods provide increased robustness to mode drift. We illustrate these trade-offs on a trapped-ion quantum computer.

中文翻译:

陷阱离子量子计算机上的高效,稳定的二量子位门

当前,量子计算受到两个量子纠缠操作成本的限制。为了扩大量子处理器的规模并获得量子优势,至关重要的是,要节省两个量子位门的功率要求,使其坚固耐用以防止实验参数漂移,并缩短门时间。在本文中,我们提出了两种方法,一种精确的方法和一种近似的方法,以构建最佳脉冲,以纠缠被困离子链中的一对离子上的门,这是一种领先的量子计算架构。我们的方法是直接的,非迭代的和线性的,并且在某些参数范围内,可以构造比标准方法所需功率少的功率大一个数量级的栅极转向脉冲。通常可以以节省的功率来换取减少的栅极时间和更大的量子位连接性。另外,我们的方法为模式漂移提供了更高的鲁棒性。我们在离子阱量子计算机上说明了这些折衷。
更新日期:2021-01-21
down
wechat
bug