当前位置: X-MOL 学术arXiv.cs.CG › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Translating Hausdorff is Hard: Fine-Grained Lower Bounds for Hausdorff Distance Under Translation
arXiv - CS - Computational Geometry Pub Date : 2021-01-19 , DOI: arxiv-2101.07696
Karl Bringmann, André Nusser

Computing the similarity of two point sets is an ubiquitous task in medical imaging, geometric shape comparison, trajectory analysis, and many more settings. Arguably the most basic distance measure for this task is the Hausdorff distance, which assigns to each point from one set the closest point in the other set and then evaluates the maximum distance of any assigned pair. A drawback is that this distance measure is not translational invariant, that is, comparing two objects just according to their shape while disregarding their position in space is impossible. Fortunately, there is a canonical translational invariant version, the Hausdorff distance under translation, which minimizes the Hausdorff distance over all translations of one of the point sets. For point sets of size $n$ and $m$, the Hausdorff distance under translation can be computed in time $\tilde O(nm)$ for the $L_1$ and $L_\inf$ norm [Chew, Kedem SWAT'92] and $\tilde O(nm (n+m))$ for the $L_2$ norm [Huttenlocher, Kedem, Sharir DCG'93]. As these bounds have not been improved for over 25 years, in this paper we approach the Hausdorff distance under translation from the perspective of fine-grained complexity theory. We show (i) a matching lower bound of $(nm)^{1-o(1)}$ for $L_1$ and $L_\inf$ assuming the Orthogonal Vectors Hypothesis and (ii) a matching lower bound of $n^{2-o(1)}$ for $L_2$ in the imbalanced case of $m = O(1)$ assuming the 3SUM Hypothesis.

中文翻译:

翻译Hausdorff很难:翻译时Hausdorff距离的细粒度下界

计算两个点集的相似度是医学成像,几何形状比较,轨迹分析以及许多其他设置中的普遍任务。可以说,完成此任务的最基本的距离度量是Hausdorff距离,该距离将一个集合中的每个点分配给另一集合中的最接近点,然后评估任何分配对中的最大距离。缺点是该距离度量不是平移不变的,也就是说,仅根据它们的形状比较两个对象而忽略它们在空间中的位置是不可能的。幸运的是,存在一个规范的平移不变版本,即平移下的Hausdorff距离,它在一个点集的所有平移上最小化了Hausdorff距离。对于大小为$ n $和$ m $的点集,对于$ L_1 $和$ L_ \ inf $范数[Chew,Kedem SWAT'92]和$ \ tilde O(nm(n + m),可以用时间$ \ tilde O(nm)$计算平移时的Hausdorff距离)$代表$ L_2 $规范[Huttenlocher,Kedem,Sharir DCG'93]。由于这些界限在过去的25年中没有得到改善,因此本文从细粒度复杂性理论的角度来研究平移下的Hausdorff距离。我们显示(i)假设正交向量假说为$ L_1 $和$ L_ \ inf $的$(nm)^ {1-o(1)} $的匹配下限,以及(ii)$ n的匹配下限假设3SUM假设,在$ m = O(1)$的不平衡情况下,$ L_2 $的^ {2-o(1)} $。由于这些界限在过去的25年中没有得到改善,因此我们从细粒度复杂性理论的角度来研究平移下的Hausdorff距离。我们显示(i)假设正交向量假说为$ L_1 $和$ L_ \ inf $的$(nm)^ {1-o(1)} $的匹配下限,以及(ii)$ n的匹配下限假设3SUM假设,在$ m = O(1)$的不平衡情况下,$ L_2 $的^ {2-o(1)} $。由于这些界限在过去的25年中没有得到改善,因此我们从细粒度复杂性理论的角度来研究平移下的Hausdorff距离。我们显示(i)假设正交向量假说为$ L_1 $和$ L_ \ inf $的$(nm)^ {1-o(1)} $的匹配下限,以及(ii)$ n的匹配下限假设3SUM假设,在$ m = O(1)$的不平衡情况下,$ L_2 $的^ {2-o(1)} $。
更新日期:2021-01-20
down
wechat
bug