当前位置: X-MOL 学术Int. J. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Small sample classification of hyperspectral image using model-agnostic meta-learning algorithm and convolutional neural network
International Journal of Remote Sensing ( IF 3.0 ) Pub Date : 2021-01-20 , DOI: 10.1080/01431161.2020.1864060
Kuiliang Gao 1 , Bing Liu 1 , Xuchu Yu 1 , Pengqiang Zhang 1 , Xiong Tan 1 , Yifan Sun 1
Affiliation  

ABSTRACT

The difficulties of obtaining sufficient high-quality labelled samples have always been one of the important factors hindering the practical application of hyperspectral images (HSI) classification. The regular deep learning models only attempt to mine the discriminant and informative features in the target HSI. Therefore, the satisfactory results cannot be obtained with only a few labelled samples because their huge parameter space cannot be fully trained. To this end, a simple and effective framework is proposed utilizing the idea of meta-learning to improve HSI classification performance under the condition of small sample. Specifically, we design a simple model by stacking convolutional blocks, and introduce a model-agnostic meta-learning algorithm (MAML) to enable the model to implement meta-optimization on vast different tasks. The MAML algorithm can enable the model to acquire the more general-purpose representations, so as to adapt quickly to new tasks with only a few labelled samples and a small number of gradient update steps. To improve the practical value of the research, two kinds of classification scenarios, cross-data small sample classification on the same HSI and cross-scene small sample classification between different HSI, are designed for experiments. The results on three public HSI demonstrate that our method outperform the state-of-the-art methods in both scenarios. In addition, the proposed method, actually an optimization-based meta-learning method, provides a new idea for HSI small sample classification.



中文翻译:

基于模型不可知元学习算法和卷积神经网络的高光谱图像小样本分类

摘要

难以获得足够的高质量标记样品一直是阻碍高光谱图像(HSI)分类的实际应用的重要因素之一。常规的深度学习模型仅尝试挖掘目标HSI中的区别性和信息性特征。因此,仅用几个标记的样本就无法获得令人满意的结果,因为它们的巨大参数空间无法得到充分训练。为此,提出了一种简单有效的框架,利用元学习的思想在小样本情况下提高HSI分类性能。具体来说,我们通过堆叠卷积块来设计一个简单的模型,并引入模型不可知的元学习算法(MAML),以使该模型能够对大量不同的任务实施元优化。MAML算法可以使模型获取更多通用的表示形式,从而仅用几个标记的样本和少量的梯度更新步骤即可快速适应新任务。为了提高研究的实用价值,设计了两种分类方案,分别用于同一HSI上的跨数据小样本分类和不同HSI之间的跨场景小样本分类。在三个公共HSI上的结果表明,在两种情况下,我们的方法均优于最新方法。此外,该方法实际上是基于优化的元学习方法,为HSI小样本分类提供了新思路。因此只需少量标记的样本和少量的梯度更新步骤即可快速适应新任务。为了提高研究的实用价值,设计了两种分类方案,分别用于同一HSI上的跨数据小样本分类和不同HSI之间的跨场景小样本分类。在三个公共HSI上的结果表明,在两种情况下,我们的方法均优于最新方法。此外,该方法实际上是基于优化的元学习方法,为HSI小样本分类提供了新思路。因此只需少量标记的样本和少量的梯度更新步骤即可快速适应新任务。为了提高研究的实用价值,设计了两种分类方案,分别用于同一HSI上的跨数据小样本分类和不同HSI之间的跨场景小样本分类。在三个公共HSI上的结果表明,在两种情况下,我们的方法均优于最新方法。此外,该方法实际上是基于优化的元学习方法,为HSI小样本分类提供了新思路。设计用于相同HSI的跨数据小样本分类和不同HSI之间的跨场景小样本分类。在三个公共HSI上的结果表明,在两种情况下,我们的方法均优于最新方法。此外,该方法实际上是基于优化的元学习方法,为HSI小样本分类提供了新思路。设计用于相同HSI的跨数据小样本分类和不同HSI之间的跨场景小样本分类。在三个公共HSI上的结果表明,在两种情况下,我们的方法均优于最新方法。此外,该方法实际上是基于优化的元学习方法,为HSI小样本分类提供了新思路。

更新日期:2021-01-20
down
wechat
bug