当前位置: X-MOL 学术Precis. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Delamination-free drilling of carbon fiber reinforced plastic with variable feed rate
Precision Engineering ( IF 3.5 ) Pub Date : 2021-01-20 , DOI: 10.1016/j.precisioneng.2021.01.003
Shoichi Tamura , Takashi Matsumura

A large number of drilling have been performed to assemble aircraft parts of carbon fiber reinforced plastic (CFRP). Although high quality is required in machining the holes with high productivity in terms of reliability of parts, delamination often occurs around the holes in drilling. This paper presents a novel drilling method with variable feed rate to machine the delamination-free holes at a high machining rate. In the drilling, the holes are machined at the standard feed rates when the chisel moves in material; and are finished with the negative thrust at higher feed rates after the chisel exits from the workpiece. Orthogonal cutting tests were conducted to measure the cutting forces and the friction angles for the uncut chip thicknesses and the rake angles. The negative thrusts were measured in large uncut chip thicknesses at large rake angles of the lips. Then, the drilling tests were conducted to verify the change in the cutting force in the variable feed rate drilling up to 100 holes. Negative thrust component appears consistently to raise the workpiece up in the exit process even though the tool wear progresses with repeating drillings. As a result, the variable feed rate drilling remarkably controls delamination compared to the constant feed rate drilling in the 100th drilling. The cutting process in the variable feed rate drilling is compared with the constant feed rate drilling in a cutting force model based on the minimum cutting energy. The negative thrust is verified when the friction angle becomes smaller than the effective rake angle with increasing the feed rate.



中文翻译:

进给速度可变的碳纤维增强塑料的无分层钻孔

为了组装碳纤维增强塑料(CFRP)的飞机部件,已经进行了大量钻探。尽管就零件的可靠性而言,以高生产率加工孔需要高质量,但是在钻孔中孔周围经常发生分层。本文提出了一种新型的可变进给率的钻孔方法,以高加工速度加工无分层的孔。在钻孔过程中,当凿子在物料中移动时,孔以标准进给率加工。凿子从工件上退出后,以较高的进给速度以负推力完成。进行正交切削试验以测量切削力和未切削切屑厚度的前角和前角。负推力是在唇的大前角处以较大的未切屑厚度测量的。然后,进行了钻孔测试,以验证在可变进给速率下钻孔多达100个孔时切削力的变化。负推力分量似乎在退出过程中始终使工件抬高,即使刀具磨损随着重复钻孔而进行。结果,与第100次钻孔中的恒定进给速度钻孔相比,可变进给速度钻孔显着控制了分层。在基于最小切削能量的切削力模型中,将可变进给率钻削中的切削过程与恒定进给率钻削进行了比较。当摩擦角小于有效前角时,随着进给速度的增加,可以确认负推力。进行了钻孔测试,以验证在可变进给速度下钻削多达100个孔时切削力的变化。负推力分量似乎在退出过程中始终使工件抬高,即使刀具磨损随着重复钻孔而进行。结果,与第100次钻孔中的恒定进给速度钻孔相比,可变进给速度钻孔显着控制了分层。在基于最小切削能量的切削力模型中,将可变进给率钻削中的切削过程与恒定进给率钻削进行了比较。当摩擦角小于有效前角时,随着进给速度的增加,可以确认负推力。进行了钻孔测试,以验证在可变进给速度下钻削多达100个孔时切削力的变化。负推力分量似乎在退出过程中始终使工件抬高,即使刀具磨损随着重复钻孔而进行。结果,与第100次钻孔中的恒定进给速度钻孔相比,可变进给速度钻孔显着控制了分层。在基于最小切削能量的切削力模型中,将可变进给率钻削中的切削过程与恒定进给率钻削进行了比较。当摩擦角小于有效前角时,随着进给速度的增加,可以确认负推力。负推力分量似乎在退出过程中始终使工件抬高,即使刀具磨损随着重复钻孔而进行。结果,与第100次钻孔中的恒定进给速度钻孔相比,可变进给速度钻孔显着控制了分层。在基于最小切削能量的切削力模型中,将可变进给率钻削中的切削过程与恒定进给率钻削进行了比较。当摩擦角小于有效前角时,随着进给速度的增加,可以确认负推力。负推力分量似乎在出口过程中始终使工件抬高,即使刀具磨损随着重复钻孔而进行。结果,与第100次钻孔中的恒定进给速度钻孔相比,可变进给速度钻孔显着控制了分层。在基于最小切削能量的切削力模型中,将可变进给率钻削中的切削过程与恒定进给率钻削进行了比较。当摩擦角小于有效前角时,随着进给速度的增加,可以确认负推力。与第100次钻孔中的恒定进给速度钻孔相比,可变进给速度的钻孔显着控制分层。在基于最小切削能量的切削力模型中,将可变进给率钻削中的切削过程与恒定进给率钻削进行了比较。当摩擦角小于有效前角时,随着进给速度的增加,可以确认负推力。与第100次钻孔中的恒定进给速度钻孔相比,可变进给速度的钻孔显着控制分层。在基于最小切削能量的切削力模型中,将可变进给率钻削中的切削过程与恒定进给率钻削进行了比较。当摩擦角小于有效前角时,随着进给速度的增加,可以确认负推力。

更新日期:2021-02-08
down
wechat
bug