当前位置: X-MOL 学术Math. Methods Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis and modeling of magnetic dipole for the radiative flow of non-Newtonian nanomaterial with Arrhenius activation energy
Mathematical Methods in the Applied Sciences ( IF 2.1 ) Pub Date : 2021-01-18 , DOI: 10.1002/mma.7124
Amit Kumar 1 , Ramayan Singh 1 , Mikhail A. Sheremet 2
Affiliation  

The present investigation deliberates the impact of the magnetic dipole for the flow of non-Newtonian Williamson nanoliquid by considering the thermal radiation and chemical reaction defined by the Arrhenius model. The flow model is established by incorporating the well-known Buongiorno's nanofluid model, and as a result, Brownian motion and thermophoretic diffusion are assimilated in mathematical modeling. The heat transportation process is accomplished by thermal radiation, heat generation owing to internal energy generation/absorption of the fluid, and viscous dissipation. The coupled nonlinear mathematically formulated partial differential equations (PDEs) are metamorphosed into the ordinary differential equations (ODEs) through the transformation. The bvp4c method is utilized to obtain the solution of formulated ODEs together with the additional conditions at the boundary. The impact of pertinent flow characteristics on temperature, velocity, and concentration profiles is outlined graphically. Also, the strength of energy, surface drag force, and mass transport are calculated and formed in the tabular form. The outcomes show that a rise in activation energy causes fluid concentration to increase. Velocity gets reduced with the increment in either ferrohydrodynamic interaction factor or Weissenberg number.

中文翻译:

具有 Arrhenius 活化能的非牛顿纳米材料辐射流的磁偶极子分析与建模

本研究通过考虑 Arrhenius 模型定义的热辐射和化学反应,研究了磁偶极子对非牛顿威廉姆森纳米液体流动的影响。流动模型是通过结合著名的 Buongiorno 纳米流体模型建立的,因此,布朗运动和热泳扩散在数学模型中被同化。传热过程是通过热辐射、流体内部能量产生/吸收产生的热量以及粘性耗散来完成的。耦合非线性数学公式偏微分方程(PDE)通过变换变形为常微分方程(ODE)。bvp4c 方法用于获得公式化 ODE 的解以及边界处的附加条件。以图形方式概述了相关流动特性对温度、速度和浓度分布的影响。此外,能量强度、表面阻力和质量传输以表格形式计算和形成。结果表明,活化能的增加导致流体浓度增加。速度随着铁流体动力学相互作用因子或魏森伯格数的增加而降低。结果表明,活化能的增加导致流体浓度增加。速度随着铁流体动力学相互作用因子或魏森伯格数的增加而降低。结果表明,活化能的增加导致流体浓度增加。速度随着铁流体动力学相互作用因子或魏森伯格数的增加而降低。
更新日期:2021-01-18
down
wechat
bug