当前位置: X-MOL 学术Coast. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing erosion and flood risk in the coastal zone through the application of multilevel Monte Carlo methods
Coastal Engineering ( IF 4.4 ) Pub Date : 2021-01-19 , DOI: 10.1016/j.coastaleng.2021.103850
Mariana.C.A. Clare , Matthew.D. Piggott , Colin.J. Cotter

The risk from erosion and flooding in the coastal zone has the potential to increase in a changing climate. The development and use of coupled hydro-morphodynamic models is therefore becoming an ever higher priority. However, their use as decision support tools suffers from the high degree of uncertainty associated with them, due to incomplete knowledge as well as natural variability in the system. Here we show for the first time how the multilevel Monte Carlo method (MLMC) can be applied to hydro-morphodynamic models, in this case XBeach, to quantify uncertainty by computing statistics of output variables given uncertain input parameters. MLMC accelerates the Monte Carlo approach through the use of a hierarchy of models with different levels of resolution. A variety of theoretical and real-world coastal zone case studies are considered, for which output variables that are important to the assessment of flood and erosion risk are estimated, such as wave run-up height and total eroded volume. We show that MLMC can significantly reduce computational cost, resulting in speed up factors of 40 or greater compared to a simple Monte Carlo approach, whilst still maintaining the same level of accuracy. Furthermore, MLMC is used to estimate the cumulative distribution of these output variables for given uncertain parameters. This allows the risk of a variable exceeding a certain value to be calculated, for example the risk of the wave run-up height exceeding the height of a physical structure such as a seawall; this is a useful capability to inform decision-making processes.



中文翻译:

通过多层次蒙特卡洛方法评估沿海地区的水土流失和洪水风险

在气候变化的情况下,沿海地区遭受侵蚀和洪水的风险有可能增加。因此,耦合水动力模型的开发和使用正变得越来越重要。但是,由于知识不完整以及系统中的自然可变性,将它们用作决策支持工具存在很大的不确定性。在这里,我们首次展示了如何将多级蒙特卡洛方法(MLMC)应用于流体形态动力学模型(在本例中为XBeach),从而通过计算给定不确定输入参数的输出变量的统计信息来量化不确定性。MLMC通过使用具有不同分辨率级别的模型层次结构来加速Monte Carlo方法。考虑了各种理论和现实世界的沿海地区案例研究,其中估计了对洪水和侵蚀风险评估很重要的输出变量,例如波浪上升高度和总侵蚀量。我们表明,与简单的蒙特卡洛方法相比,MLMC可以显着降低计算成本,从而使加速因子提高40倍或更多,同时仍保持相同水平的准确性。此外,对于给定的不确定参数,MLMC用于估计这些输出变量的累积分布。这使得可以计算出变量超过一定值的风险,例如波浪上升高度超过诸如海堤之类的物理结构的高度的风险。这是通知决策过程的有用功能。例如波浪上升高度和总侵蚀量。我们表明,与简单的蒙特卡洛方法相比,MLMC可以显着降低计算成本,从而使加速因子提高40倍或更多,同时仍保持相同水平的准确性。此外,对于给定的不确定参数,MLMC用于估计这些输出变量的累积分布。这使得可以计算出变量超过一定值的风险,例如波浪上升高度超过诸如海堤之类的物理结构的高度的风险。这是通知决策过程的有用功能。例如波浪上升高度和总侵蚀量。我们表明,与简单的蒙特卡洛方法相比,MLMC可以显着降低计算成本,从而使加速因子提高40倍或更多,同时仍保持相同水平的准确性。此外,对于给定的不确定参数,MLMC用于估计这些输出变量的累积分布。这使得可以计算出变量超过一定值的风险,例如波浪上升高度超过诸如海堤之类的物理结构的高度的风险。这是通知决策过程的有用功能。同时仍保持相同水平的准确性。此外,对于给定的不确定参数,MLMC用于估计这些输出变量的累积分布。这使得可以计算出变量超过一定值的风险,例如波浪上升高度超过诸如海堤之类的物理结构的高度的风险。这是通知决策过程的有用功能。同时仍保持相同水平的准确性。此外,对于给定的不确定参数,MLMC用于估计这些输出变量的累积分布。这使得可以计算出变量超过一定值的风险,例如波浪上升高度超过诸如海堤之类的物理结构的高度的风险。这是通知决策过程的有用功能。

更新日期:2021-01-19
down
wechat
bug