当前位置: X-MOL 学术Z. Angew. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiplicity and concentration results for a ( p , q )-Laplacian problem in $${\mathbb {R}}^{N}$$ R N
Zeitschrift für angewandte Mathematik und Physik ( IF 2 ) Pub Date : 2021-01-18 , DOI: 10.1007/s00033-020-01466-7
Vincenzo Ambrosio , Dušan Repovš

In this paper, we study the multiplicity and concentration of positive solutions for the following (pq)-Laplacian problem:

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _{p} u -\Delta _{q} u +V(\varepsilon x) \left( |u|^{p-2}u + |u|^{q-2}u\right) = f(u) &{} \text{ in } {\mathbb {R}}^{N}, \\ u\in W^{1, p}({\mathbb {R}}^{N})\cap W^{1, q}({\mathbb {R}}^{N}), \quad u>0 \text{ in } {\mathbb {R}}^{N}, \end{array} \right. \end{aligned}$$

where \(\varepsilon >0\) is a small parameter, \(1< p<q<N\), \(\Delta _{r}u={{\,\mathrm{div}\,}}(|\nabla u|^{r-2}\nabla u)\), with \(r\in \{p, q\}\), is the r-Laplacian operator, \(V:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}\) is a continuous function satisfying the global Rabinowitz condition, and \(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small \(\varepsilon \).



中文翻译:

$$ {\ mathbb {R}} ^ {N} $$ RN中(p,q)-Laplacian问题的多重性和集中性结果

在本文中,我们研究以下(p,  q)-Laplacian问题的正解的多重性和集中性:

$$ \ begin {aligned} \ left \ {\ begin {array} {ll}-\ Delta _ {p} u-\ Delta _ {q} u + V(\ varepsilon x)\ left(| u | ^ { p-2} u + | u | ^ {q-2} u \ right)= f(u)&{} \ text {in} {\ mathbb {R}} ^ {N},\\ u \ in W ^ {1,p}({\ mathbb {R}} ^ {N})\ cap W ^ {1,q}({\ mathbb {R}} ^ {N}),\ quad u> 0 \ text {在} {\ mathbb {R}} ^ {N}中,\ end {array} \ right。\ end {aligned} $$

其中\(\ varepsilon> 0 \)是一个小参数,\(1 <p <q <N \)\(\ Delta _ {r} u = {{\,\ mathrm {div} \,}}( | \ nabla u | ^ {r-2} \ nabla u)\)\(r \ in \ {p,q \} \)在一起,是r-拉普拉斯算子\(V:{\ mathbb {R }} ^ {N} \ rightarrow {\ mathbb {R}} \)是一个满足全局Rabinowitz条件的连续函数,并且\(f:{\ mathbb {R}} \ rightarrow {\ mathbb {R}} \)是具有亚临界增长的连续功能。使用适当的变分参数和Ljusternik–Schnirelmann类别理论,我们研究了正解的数量与该集合的拓扑之间的关系,其中V在小情况下达到最小值\(\ varepsilon \)

更新日期:2021-01-19
down
wechat
bug