当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical investigation on the heat transfer of an automotive engine’s turbocharger
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.5 ) Pub Date : 2021-01-17 , DOI: 10.1177/0954407020987829
Hamed Basir 1 , Ayat Gharehghani 2 , Abolfazl Ahmadi 3 , Seyed Mostafa Agha Mirsalim 4 , Marc A Rosen 5
Affiliation  

Measuring the temperature distribution in a complex and important engine part, such as a turbocharger, is essential for improving engine performance and efficiency. Heat transfer from the turbine to the compressor can strongly influence the turbocharger performance. One of the main measurement methods involves the installation of multiple K-type sensors. However, the location as well as the maximum and minimum temperatures of the turbocharger and the subsequent critical points may not be obtained by using sensors. In the current study, thermocouples, as well as an infra-red camera, are used to study the temperature distribution of the turbocharger housing in a spark ignition engine. A new method is introduced to determine the thermal radiation coefficient of the turbocharger housing by using a laboratory furnace and an infra-red camera. Together with experiments, the finite element method is used to find the temperature distribution in the turbocharger for all thicknesses. Comparing the temperature distribution obtained from simulation with experimental data, an acceptable level of agreement is observed. The location and temperature of the hottest area in experimental and numerical investigations are close to the waste gate. Temperatures using the finite element method for bearings exhibit maximum and minimum errors of 4.9% and 2.3%, respectively, indicating reasonable accuracy for the simulation.



中文翻译:

汽车发动机涡轮增压器传热的实验与数值研究

测量复杂而重要的发动机零件(例如涡轮增压器)中的温度分布对于提高发动机性能和效率至关重要。从涡轮到压缩机的热传递会严重影响涡轮增压器的性能。主要的测量方法之一是安装多个K型传感器。但是,涡轮增压器的位置,最高和最低温度以及随后的临界点可能无法通过使用传感器获得。在当前的研究中,热电偶以及红外摄像机被用于研究火花点火发动机中涡轮增压器壳体的温度分布。引入了一种通过使用实验室炉和红外热像仪来确定涡轮增压器壳体的热辐射系数的新方法。与实验一起,使用有限元方法来查找涡轮增压器中所有厚度的温度分布。将模拟获得的温度分布与实验数据进行比较,可以观察到可接受的一致性水平。实验和数值研究中最热区域的位置和温度都靠近废气门。使用轴承的有限元方法测得的温度最大和最小误差分别为4.9%和2.3%,这表明模拟具有合理的精度。实验和数值研究中最热区域的位置和温度都靠近废气门。使用轴承的有限元方法测得的温度最大和最小误差分别为4.9%和2.3%,这表明模拟具有合理的精度。实验和数值研究中最热区域的位置和温度都靠近废气门。使用轴承的有限元方法测得的温度最大和最小误差分别为4.9%和2.3%,这表明模拟具有合理的精度。

更新日期:2021-01-18
down
wechat
bug