当前位置: X-MOL 学术Math. Mech. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of a thermodynamically consistent interface stress on thermal-induced nanovoid evolution in NiAl
Mathematics and Mechanics of Solids ( IF 1.7 ) Pub Date : 2021-01-18 , DOI: 10.1177/1081286520986603
Mohammad Sadegh Ghaedi 1 , Mahdi Javanbakht 2
Affiliation  

In the present work, the effect of a thermodynamically consistent inelastic interface stress on nanovoid evolution in NiAl is studied. Such interface stress is introduced for the solid–gas interface of nanovoids within the concept of the phase field approach. The Cahn–Hilliard (CH) equation using the Helmholtz free energy describes the evolution of nanovoid concentration. The interface stress changes the total stress distribution and affects the elastic stress field. Thus, due to the significant effect of the elastic energy on nanovoid dynamics, it can indirectly affect nanovoid nucleation and growth. The highly nonlinear coupled CH and elasticity equations are solved using the finite element method and the COMSOL code. The coupling appears due to the presence of the nonlinear nanovoid inelastic strain in the total strain, the presence of the nonlinear inelastic interface stress in the stress tensor and the presence of elastic energy in the Helmholtz free energy. Several examples of thermal-induced nanovoid evolutions are presented to investigate the effect of the solid–gas interface stress. The obtained results show the significant effect of the interface stress on the total stress distribution, and consequently a different distribution of thermodynamic driving force which can affect the nanostructure evolution and the deformation. Mainly, the interface stress represents a promotive effect on nanovoid growth which results in a faster nanovoid growth and a larger nanovoid concentration and region.



中文翻译:

热力学一致的界面应力对NiAl热诱导纳米空隙演化的影响

在目前的工作中,研究了热力学一致的非弹性界面应力对NiAl中纳米空隙演化的影响。在相场方法的概念内,这种界面应力被引入纳米空隙的固-气界面。使用亥姆霍兹自由能的Cahn–Hilliard(CH)方程描述了纳米空隙浓度的演变。界面应力会改变总应力分布并影响弹性应力场。因此,由于弹性能对纳米空隙动力学的显着影响,它可以间接影响纳米空隙的形核和生长。使用有限元方法和COMSOL代码求解高度非线性的CH和弹性方程。出现耦合是由于总应变中存在非线性纳米空隙非弹性应变,应力张量中存在非线性非弹性界面应力,亥姆霍兹自由能中存在弹性能。给出了热诱导纳米空隙演化的几个例子,以研究固-气界面应力的影响。获得的结果表明界面应力对总应力分布有显着影响,因此热力学驱动力的不同分布会影响纳米结构的演化和变形。主要地,界面应力代表对纳米空隙生长的促进作用,其导致更快的纳米空隙生长以及更大的纳米空隙浓度和区域。给出了一些热诱导纳米空隙演化的例子,以研究固-气界面应力的影响。获得的结果表明界面应力对总应力分布有显着影响,因此热力学驱动力的不同分布会影响纳米结构的演化和变形。主要地,界面应力代表对纳米空隙生长的促进作用,其导致更快的纳米空隙生长以及更大的纳米空隙浓度和区域。给出了一些热诱导纳米空隙演化的例子,以研究固-气界面应力的影响。获得的结果表明界面应力对总应力分布有显着影响,因此热力学驱动力的不同分布会影响纳米结构的演化和变形。主要地,界面应力代表对纳米空隙生长的促进作用,其导致更快的纳米空隙生长以及更大的纳米空隙浓度和区域。因此,热力学驱动力的不同分布会影响纳米结构的演化和变形。主要地,界面应力代表对纳米空隙生长的促进作用,其导致更快的纳米空隙生长以及更大的纳米空隙浓度和区域。因此,热力学驱动力的不同分布会影响纳米结构的演化和变形。主要地,界面应力代表对纳米空隙生长的促进作用,其导致更快的纳米空隙生长以及更大的纳米空隙浓度和区域。

更新日期:2021-01-18
down
wechat
bug