当前位置: X-MOL 学术Publ. Astron. Soc. Aust. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Processing GOTO data with the Rubin Observatory LSST Science Pipelines I: Production of coadded frames
Publications of the Astronomical Society of Australia ( IF 6.3 ) Pub Date : 2021-01-18 , DOI: 10.1017/pasa.2020.45
J. R. Mullaney , L. Makrygianni , V. Dhillon , S. Littlefair , K. Ackley , M. Dyer , J. Lyman , K. Ulaczyk , R. Cutter , Y.-L. Mong , D. Steeghs , D. K. Galloway , P. O’Brien , G. Ramsay , S. Poshyachinda , R. Kotak , L. Nuttall , E. Pallé , D. Pollacco , E. Thrane , S. Aukkaravittayapun , S. Awiphan , R. Breton , U. Burhanudin , P. Chote , A. Chrimes , E. Daw , C. Duffy , R. Eyles-Ferris , B. Gompertz , T. Heikkilä , P. Irawati , M. Kennedy , T. Killestein , A. Levan , T. Marsh , D. Mata-Sanchez , S. Mattila , J. Maund , J. McCormac , D. Mkrtichian , E. Rol , U. Sawangwit , E. Stanway , R. Starling , S. Tooke , K. Wiersema

The past few decades have seen the burgeoning of wide-field, high-cadence surveys, the most formidable of which will be the Legacy Survey of Space and Time (LSST) to be conducted by the Vera C. Rubin Observatory. So new is the field of systematic time-domain survey astronomy; however, that major scientific insights will continue to be obtained using smaller, more flexible systems than the LSST. One such example is the Gravitational-wave Optical Transient Observer (GOTO) whose primary science objective is the optical follow-up of gravitational wave events. The amount and rate of data production by GOTO and other wide-area, high-cadence surveys presents a significant challenge to data processing pipelines which need to operate in near-real time to fully exploit the time domain. In this study, we adapt the Rubin Observatory LSST Science Pipelines to process GOTO data, thereby exploring the feasibility of using this ‘off-the-shelf’ pipeline to process data from other wide-area, high-cadence surveys. In this paper, we describe how we use the LSST Science Pipelines to process raw GOTO frames to ultimately produce calibrated coadded images and photometric source catalogues. After comparing the measured astrometry and photometry to those of matched sources from PanSTARRS DR1, we find that measured source positions are typically accurate to subpixel levels, and that measured L-band photometries are accurate to $\sim50$ mmag at $m_L\sim16$ and $\sim200$ mmag at $m_L\sim18$ . These values compare favourably to those obtained using GOTO’s primary, in-house pipeline, gotophoto, in spite of both pipelines having undergone further development and improvement beyond the implementations used in this study. Finally, we release a generic ‘obs package’ that others can build upon, should they wish to use the LSST Science Pipelines to process data from other facilities.

中文翻译:

使用 Rubin Observatory LSST Science Pipelines I 处理 GOTO 数据:生成附加帧

在过去的几十年里,大范围、高频率的调查蓬勃发展,其中最强大的将是由 Vera C. Rubin 天文台进行的传统时空调查 (LSST)。系统时域巡天天文学领域如此新;然而,使用比 LSST 更小、更灵活的系统将继续获得主要的科学见解。一个这样的例子是引力波光学瞬态观测器 (GOTO),其主要科学目标是引力波事件的光学跟踪。GOTO 和其他广域、高节奏调查产生的数据量和速度对需要近实时运行以充分利用时域的数据处理管道提出了重大挑战。在这项研究中,我们采用鲁宾天文台 LSST 科学管道来处理 GOTO 数据,从而探索使用这种“现成”管道处理来自其他广域、高节奏调查的数据的可行性。在本文中,我们描述了如何使用 LSST 科学管道来处理原始 GOTO 帧,以最终生成校准的叠加图像和光度源目录。在将测量的天体测量和光度测量与 PanSTARRS DR1 的匹配源进行比较后,我们发现测量的源位置通常精确到亚像素级别,并且测量 我们描述了我们如何使用 LSST 科学管道来处理原始 GOTO 帧,以最终生成校准的叠加图像和光度源目录。在将测量的天体测量和光度测量与 PanSTARRS DR1 的匹配源进行比较后,我们发现测量的源位置通常精确到亚像素级别,并且测量 我们描述了我们如何使用 LSST 科学管道来处理原始 GOTO 帧,以最终生成校准的叠加图像和光度源目录。在将测量的天体测量和光度测量与 PanSTARRS DR1 的匹配源进行比较后,我们发现测量的源位置通常精确到亚像素级别,并且测量大号波段光度计精确到 $\sim50$ mmag 在 $m_L\sim16$ $\sim200$ mmag 在 $m_L\sim18$ . 这些值优于使用 GOTO 的主要内部管道获得的值,去照片,尽管这两个管道在本研究中使用的实现之外都经历了进一步的开发和改进。最后,如果他们希望使用 LSST 科学管道来处理来自其他设施的数据,我们发布了一个通用的“obs 包”,其他人可以在此基础上进行构建。
更新日期:2021-01-18
down
wechat
bug