当前位置: X-MOL 学术Environ. Geochem. Health › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characteristics, emission sources and health risk assessment of trace elements in size-segregated aerosols during haze and non-haze periods at Ningbo, China
Environmental Geochemistry and Health ( IF 3.2 ) Pub Date : 2021-01-18 , DOI: 10.1007/s10653-020-00757-2
Liangping Long 1, 2 , Jun He 1, 2, 3 , Xiaogang Yang 4
Affiliation  

To characterize trace elements from inhalable particles and to estimate human health risks, airborne particles at an urban area of Ningbo city during haze and non-haze periods from November 2013 to May 2014 were collected by a nine-stage sampler. Seventeen trace elements (Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb) were measured by inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of trace elements are in the ranges of 0.51 ng m−3 (Co) ~ 1.53 µg m−3 (K) for fine particles (Dp < 2.1 μm), and 1.07 ng m−3 (Co) ~ 4.96 µg m−3 (K) for coarse particles (2.1 μm < Dp < 9.0 μm) during the haze days, which are 1.15 –4.30 and 1.23– 7.83-fold as those of non-haze days, respectively. These elements could be divided into crustal elements (Na, Mg, Al, Ca, Ti, Fe and Co), non-crustal elements (Cu, Zn, Cd and Pb) and mixed elements (K, V, Cr, Mn, Ni and As) according to their enrichment factor values (EFs) and size distribution characteristics. Five emission sources of trace elements were identified by positive matrix factorization (PMF) modeling. The main sources of trace elements in fine particles are traffic emission (21.7%), coal combustion (23.6%) and biomass burning (32.1%); however, soil dust (61.5%), traffic emission (21.9%) and industry emissions (11.8%) are the main contributors for coarse particles. With the help of the multiple-path particle dosimetry (MPPD) model, it was found that deposition fractions of seventeen measured elements in the pulmonary region were in the range of 12.4%–15.1% and 6.66% –12.3% for the fine and coarse particles, respectively. The human health risk assessment (HRA) was employed according to the deposition concentration in the pulmonary region. The non-carcinogenic risk (HI) was below the safety limit (1.00). Nonetheless, the excess lifetime carcinogenic risk (ELCR) for adults increased by 2.42-fold during the haze days (2.06 × 10–5) as compared to that of non-haze days (8.50 × 10–6) in fine particles. Cr (VI) and As together contributed 96.5% and 96.3% of the integrated cancer risks during the haze and non-haze periods, respectively. Moreover, the related ELCR values in coarse particles were 36.7% and 62.8% of those in the fine particles for the non-haze period and haze period, respectively.



中文翻译:

宁波市雾霾期和非雾霾期粒度分离气溶胶微量元素特征、排放源及健康风险评估

为了表征可吸入颗粒中的微量元素并估计人类健康风险,我们通过九级采样器收集了宁波市市区 2013 年 11 月至 2014 年 5 月雾霾和非雾霾期间的空气中颗粒物。通过电感耦合等离子体质谱法 (ICP-MS) 测量了 17 种痕量元素(Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Cd 和 Pb) )。微量元素的浓度范围为 0.51 ng m -3 (Co) ~ 1.53 µg m -3 (K),细颗粒 (Dp < 2.1 μm) 和 1.07 ng m -3 (Co) ~ 4.96 µg m −3(K) 雾霾天粗颗粒(2.1 μm < Dp < 9.0 μm),分别是非雾霾天的 1.15 – 4.30 和 1.23 – 7.83 倍。这些元素可分为地壳元素(Na、Mg、Al、Ca、Ti、Fe、Co)、非地壳元素(Cu、Zn、Cd、Pb)和混合元素(K、V、Cr、Mn、Ni)。和 As) 根据它们的富集因子值 (EF) 和尺寸分布特征。通过正矩阵分解 (PMF) 模型确定了五个痕量元素的排放源。细颗粒物中微量元素的主要来源是交通排放(21.7%)、燃煤(23.6%)和生物质燃烧(32.1%);然而,土壤粉尘 (61.5%)、交通排放 (21.9%) 和工业排放 (11.8%) 是粗颗粒的主要贡献者。借助多径粒子剂量测定 (MPPD) 模型发现,17 种被测元素在肺区的沉积比例在 12.4%–15.1% 和 6.66%–12.3% 的范围内,细颗粒和粗颗粒粒子,分别。根据肺部区域的沉积浓度采用人类健康风险评估(HRA)。非致癌风险 (HI) 低于安全限值 (1.00)。尽管如此,在雾霾天(2.06 × 10 根据肺部区域的沉积浓度采用人类健康风险评估(HRA)。非致癌风险 (HI) 低于安全限值 (1.00)。尽管如此,在雾霾天(2.06 × 10 根据肺部区域的沉积浓度采用人类健康风险评估(HRA)。非致癌风险 (HI) 低于安全限值 (1.00)。尽管如此,在雾霾天(2.06 × 10–5 ) 与非雾天 (8.50 × 10 –6 ) 的细颗粒相比。在雾霾和非雾霾期间,Cr (VI) 和 As 共同贡献了 96.5% 和 96.3% 的综合癌症风险。此外,粗颗粒的相关 ELCR 值在非雾霾期和雾霾期分别为细颗粒的 36.7% 和 62.8%。

更新日期:2021-01-18
down
wechat
bug