当前位置: X-MOL 学术Transp. Res. Part C Emerg. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-layer multi-rate model predictive control for vehicle platooning under IEEE 802.11p
Transportation Research Part C: Emerging Technologies ( IF 7.6 ) Pub Date : 2021-01-17 , DOI: 10.1016/j.trc.2020.102905
Amr Ibrahim , Dip Goswami , Hong Li , Iñaki Martín Soroa , Twan Basten

Vehicle platooning has gained attention for its potential to increase road capacity and safety, and higher fuel efficiency. Platoon controls are implemented over Vehicle-to-Vehicle (V2V) wireless communication, in-vehicle networks and Electronic Control Units (ECUs). V2V communication has a low message rate imposed by the V2V standard compared to the rate of modern in-vehicle networks and ECUs. The platoon control strategy should take into account such multi-rate nature of the implementation architecture for higher performance. Current literature does not explicitly consider such real-life constraints. We propose a two-layered control framework for vehicle platoons wirelessly communicating complying with the industrial standard IEEE 802.11p. In the upper-layer, vehicles receive state information from the immediate preceding vehicle over a control channel at 10 Hz under the IEEE 802.11p standard with occasional packet drops. Using such information and the vehicle state information, the engine control system, i.e. the lower-layer, realizes the desired vehicle state (e.g., acceleration) over the fast and reliable in-vehicle networks (e.g., FlexRay, Ethernet). In this work, a distributed model predictive control framework is proposed for the upper-layer targeting a Predecessor-Follower (PF) topology. A state-feedback control scheme is proposed for realizing the desired vehicle states for the lower-layer. Our framework minimizes the inter-vehicle distance and the tracking error enforcing collision avoidance and robustness against packet drops at the upper-layer. We validate our algorithm in simulation using our co-simulation framework CReTS and on an embedded platform, developed by Cohda Wireless and NXP, running in real time and communicating through the IEEE 802.11p standard. With extensive simulations and experiments, we evaluate the performance and feasibility of the proposed framework under a number of practical constraints. Our approach is a step towards the implementation of platoon control in reality.



中文翻译:

IEEE 802.11p下车辆排行的多层多速率模型预测控制

车辆成排技术具有提高道路通行能力和安全性以及提高燃油效率的潜力,因此受到了关注。排控制是通过车对车(V2V)无线通信,车内网络和电子控制单元(ECU)实施的。与现代车载网络和ECU的速率相比,V2V通信具有由V2V标准施加的低消息速率。排控制策略应考虑这种多速率实现架构的本质,以实现更高的性能。当前的文献没有明确考虑这种现实生活中的限制。我们提出了一个两层的控制框架,用于车辆排无线通信,符合工业标准IEEE 802.11p。在上层,车辆在IEEE 802.11p标准下以10 Hz的控制信道从前一车辆接收状态信息,偶尔会有丢包。使用这样的信息和车辆状态信息,发动机控制系统,即下层,通过快速且可靠的车载网络(例如,FlexRay,以太网)实现期望的车辆状态(例如,加速度)。在这项工作中,针对面向上级跟随者(PF)拓扑的上层提出了分布式模型预测控制框架。提出了一种状态反馈控制方案,以实现下层的所需车辆状态。我们的框架最大程度地减少了车辆之间的距离和跟踪误差,从而实现了避免碰撞的能力以及针对上层丢包的鲁棒性。我们使用协同仿真框架CReTS在由Cohda Wireless和NXP开发的嵌入式平台上实时运行并通过IEEE 802.11p标准进行通信,从而在仿真中验证了算法。通过大量的模拟和实验,我们在许多实际约束下评估了所提出框架的性能和可行性。我们的方法是朝着实际实施排控制迈出的一步。我们的框架最大程度地减少了车辆之间的距离和跟踪误差,从而实现了避免碰撞的能力以及针对上层丢包的鲁棒性。我们使用协同仿真框架CReTS在由Cohda Wireless和NXP开发的嵌入式平台上实时运行并通过IEEE 802.11p标准进行通信,从而在仿真中验证了算法。通过大量的模拟和实验,我们在许多实际约束下评估了所提出框架的性能和可行性。我们的方法是朝着实际实施排控制迈出的一步。我们的框架最大程度地减少了车辆之间的距离和跟踪误差,从而实现了避免碰撞的能力以及针对上层丢包的鲁棒性。我们使用协同仿真框架CReTS在由Cohda Wireless和NXP开发的嵌入式平台上实时运行并通过IEEE 802.11p标准进行通信,从而在仿真中验证了算法。通过大量的模拟和实验,我们在许多实际约束下评估了所提出框架的性能和可行性。我们的方法是朝着实际实施排控制迈出的一步。由Cohda Wireless和NXP开发,可实时运行并通过IEEE 802.11p标准进行通信。通过大量的模拟和实验,我们在许多实际约束下评估了所提出框架的性能和可行性。我们的方法是朝着实际实施排控制迈出的一步。由Cohda Wireless和NXP开发,可实时运行并通过IEEE 802.11p标准进行通信。通过大量的模拟和实验,我们在许多实际约束下评估了所提出框架的性能和可行性。我们的方法是朝着实际实施排控制迈出的一步。

更新日期:2021-01-18
down
wechat
bug