当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of bonding temperature on the microstructure and mechanical properties of the diffusion-bonded joints of Zr705 alloy
Materials Science and Engineering: A ( IF 6.1 ) Pub Date : 2021-01-16 , DOI: 10.1016/j.msea.2021.140782
Sheng Zeng , Guoqiang You , Fanjin Yao , Jingchuan Luo , Xin Tong

Research on the diffusion bonding of ( )similar joints of zirconium (Zr) alloys is limited as compared to that on the diffusion bonding of ( )dissimilar joints. The similar Zr alloys are difficult to bond together owing to its high melting point; however, an added interlayer can solve this problem. This study demonstrated the successful vacuum diffusion bonding of the Zr-2.5Nb (Zr705) alloy with a Cu interlayer at 900–960 °C and analyzes the microstructure and mechanical properties of the diffusion-bonded joints. The layered morphology of the joints at 900 °C and 920 °C is attributable to the formation of intermetallic compound layers ( ). In contrast, no such formation was observed at 940 °C and 960 °C owing to the complete diffusion of Cu atoms into the Zr substrate. The base material at the bonding temperatures of 900 °C and 920 °C exhibited two different microstructures i.e., a Widmanstätten microstructure near the bonding interface and a duplex microstructure away from the bonding interface. However, the temperatures at 940 °C and 960 °C exhibited an entirely Widmanstätten microstructure. The tensile strength of the joints increased with the bonding temperature, from 78 MPa at 900 °C to a maximum of 603 MPa at 960 °C (joint efficiency = 104.8%), and the elongation first increased and then decreased with the increasing temperature; at 940 °C, it reached 54% that of the original Zr705 alloy.



中文翻译:

粘接温度对Zr705合金扩散焊接接头组织和力学性能的影响

锆(Zr)合金()相似接头的扩散结合的研究相对于()异种接头(扩散)的研究有限。相似的Zr合金由于熔点高而难以结合在一起。但是,添加一个中间层可以解决此问题。这项研究证明了在900–960°C时具有Zr-2.5Nb(Zr705)合金和Cu中间层的成功真空扩散结合,并分析了扩散结合接头的微观结构和力学性能。接头在900°C和920°C下的分层形态可归因于金属间化合物层()的形成。相反,由于Cu原子完全扩散到Zr衬底中,在940℃和960℃没有观察到这种形成。基材在900°C和920°C的粘合温度下表现出两种不同的微观结构,即靠近粘合界面的Widmanstätten微观结构和远离粘合界面的双相微观结构。但是,在940°C和960°C的温度下完全呈现出Widmanstätten微观结构。接头的抗拉强度随粘结温度的升高而增加,从900°C时的78 MPa升高到960°C时的最高603 MPa(接头效率= 104.8%),伸长率随温度的升高先升高后降低。在940°C时,达到原始Zr705合金的54%。940°C和960°C的温度表现出完全的Widmanstätten微观结构。接头的抗拉强度随粘结温度的升高而增加,从900°C时的78 MPa升高到960°C时的最高603 MPa(接头效率= 104.8%),伸长率随温度的升高先升高后降低。在940°C时,达到原始Zr705合金的54%。940°C和960°C的温度表现出完全的Widmanstätten微观结构。接头的抗拉强度随粘结温度的升高而增加,从900°C时的78 MPa升高到960°C时的最高603 MPa(接头效率= 104.8%),伸长率随温度的升高先升高后降低。在940°C时,达到原始Zr705合金的54%。

更新日期:2021-01-22
down
wechat
bug