当前位置: X-MOL 学术Int. J. Rock Mech. Min. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical study of stability of mining roadways with 6.0-m section coal pillars under influence of repeated mining
International Journal of Rock Mechanics and Mining Sciences ( IF 7.0 ) Pub Date : 2021-01-16 , DOI: 10.1016/j.ijrmms.2021.104641
Ze Xia , Qiangling Yao , Guosheng Meng , Qiang Xu , Chuanjin Tang , Liu Zhu , Weinan Wang , Qian Shen

This paper presents the results of a numerical study of the stability of mining roadways in double-roadway excavation with a 6.0-m coal pillar. This excavation method is used to alleviate the imbalance between mining and tunneling and improve the recovery rate of coal resources. The roadways on both sides of the 6.0-m coal pillar were excavated before the mining activities, resulting in a complex stress environment of the coal pillar. A meticulously validated numerical model was developed to investigate the dynamic evolution characteristics of the 6.0-m coal pillar vertical stress and plastic state. The results indicated that the coal pillar entered the residual state and that the solid coal side of the next panel became the main bearing body under the abutment load caused by the mining activity of the 8311 panel. The abutment load transfer process from the 8311 gob to the 8312 panel exhibited obvious non-instantaneity. During the mining of the 8312 panel, an L-shaped high-stress area was formed at the upper end of the working face, owing to the superposition of the abutment load of two adjacent gobs. When the coal pillar transitioned from an elastic state to a plastic state, large deformation and failure occurred. To ensure roadway safety during the service period, the combined control technologies of (1) roof cutting using dense drilling and (2) support strengthening were proposed. Field observations indicated that the stability of the roadway next to the 6.0-m coal pillar was maintained and that the severity of other ground control problems was reduced.



中文翻译:

重复开采影响下6.0 m断面煤柱开采巷道稳定性的数值研究

本文介绍了用6.0米煤柱进行双巷开挖开采巷道稳定性的数值研究结果。这种开挖方法可减轻采矿与隧道之间的不平衡,提高煤炭资源的采收率。在进行采矿活动之前,已经开挖了6.0米煤柱两侧的巷道,导致了煤柱应力环境复杂。建立了经过严格验证的数值模型,以研究6.0米煤柱垂直应力和塑性状态的动态演化特征。结果表明,煤柱进入残余状态,下一块面板的固体煤侧在8311面板的开采活动引起的基台荷载下成为主要的支承体。从8311料滴到8312面板的基台载荷传递过程显示出明显的非瞬时性。在开采8312面板的过程中,由于两个相邻料滴的邻接载荷的叠加,在工作面的上端形成了一个L形的高应力区域。当煤柱从弹性状态转变为塑性状态时,发生大的变形和破坏。为了保证服务期内的巷道安全,提出了(1)密集钻削顶板与(2)加强支护相结合的控制技术。现场观察表明,与6.0米煤柱相邻的巷道保持了稳定性,其他地面控制问题的严重性也降低了。在开采8312面板的过程中,由于两个相邻料滴的邻接载荷的叠加,在工作面的上端形成了一个L形的高应力区域。当煤柱从弹性状态转变为塑性状态时,发生大的变形和破坏。为了保证服务期内的巷道安全,提出了(1)密集钻削顶板与(2)加强支护相结合的控制技术。现场观察表明,与6.0米煤柱相邻的巷道保持了稳定性,其他地面控制问题的严重性也降低了。在开采8312面板的过程中,由于两个相邻料滴的邻接载荷的叠加,在工作面的上端形成了一个L形的高应力区域。当煤柱从弹性状态转变为塑性状态时,发生大的变形和破坏。为了保证服务期内的巷道安全,提出了(1)密集钻削顶板与(2)加强支护相结合的控制技术。现场观察表明,与6.0米煤柱相邻的巷道保持了稳定性,其他地面控制问题的严重性也降低了。当煤柱从弹性状态转变为塑性状态时,发生大的变形和破坏。为了保证服务期内的巷道安全,提出了(1)密集钻削顶板与(2)加强支护相结合的控制技术。现场观察表明,与6.0米煤柱相邻的巷道保持了稳定性,其他地面控制问题的严重性也降低了。当煤柱从弹性状态转变为塑性状态时,发生大的变形和破坏。为了保证服务期内的巷道安全,提出了(1)密集钻削顶板与(2)加强支护相结合的控制技术。现场观察表明,与6.0米煤柱相邻的巷道保持了稳定性,其他地面控制问题的严重性也降低了。

更新日期:2021-01-18
down
wechat
bug