当前位置: X-MOL 学术Int. J. Rock Mech. Min. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discrete fracture matrix modelling of fully-coupled CO2 flow – Deformation processes in fractured coal
International Journal of Rock Mechanics and Mining Sciences ( IF 7.0 ) Pub Date : 2021-01-16 , DOI: 10.1016/j.ijrmms.2021.104644
K.H.S.M. Sampath , M.S.A. Perera , D. Elsworth , S.K. Matthai , P.G. Ranjith , Li Dong-yin

CO2 interaction causes complex mechanical deformations and flow modifications in coal, depending on the spatial disposition of the fracture-matrix system. Sorption-induced matrix swelling reduces the local fracture aperture and correspondingly the fracture permeability, consequently influencing gas flow throughout the seam. Since these modifications are highly -heterogeneous and -localized, an explicitly-represented geometric model is essential for the accurate modelling of the fully-coupled process. In this study, the CO2 flow – coal deformation process is implemented in a numerical model at the scale of coal constituents (i.e. matrix blocks and cleats), through the inclusion of a spatially distributed 3D – discrete fracture matrix (DFM) network. Fracture geometry is generated from a stochastically simplified 2D fracture network obtained from micro-CT imaging. The approach is initially validated against experimental results from a single-fractured coal specimen and the analysis extended to the complex fracture geometry. The spatial and temporal evolutions of fracture/matrix pressure, adsorbed mass of CO2, adsorption-induced swelling, alterations in local fracture aperture and permeability, and contact modelling at fully fracture closure are specifically analysed with comparison against no-swelling behaviour. Results indicate that the high-permeability fracture pathways provide initial easy access for the CO2 to diffuse into the coal matrix, causing sorption-induced matrix swelling. Although the individual matrix blocks exhibit a slight shrinkage immediately upon injection of high fluid pressures within the fractures, sorption-induced swelling rapidly overcomes this, resulting in an overall volume expansion at full pressure equilibration. This is turn causes a significant reduction in fracture aperture and permeability. The magnitude of the local fracture aperture reduction depends on the swelling behaviour of the bounding matrix, that leads to essentially full-closure of small fractures, causing significant localized flow modifications to further CO2 injection in the vicinity of the particular fractures. The contact modelling approach identifies the timing and locations of fully-closing fractures in the complex geometry, where butt cleats exhibiting initial small apertures are prone to fully-close, compared to larger aperture face cleats that retain flow.



中文翻译:

完全耦合CO 2流的离散裂缝矩阵建模-压裂煤的变形过程

CO 2相互作用会导致煤中复杂的机械变形和流量变化,具体取决于裂缝基质系统的空间布置。吸附引起的基体膨胀减小了局部裂缝的孔径,并相应地降低了裂缝的渗透率,因此影响了整个煤层的气流。由于这些修改是高度异质且局部化的,因此对于完全耦合过程的精确建模,显式表示的几何模型必不可少。在这项研究中,CO 2通过包含空间分布的3D-离散裂缝矩阵(DFM)网络,以煤成分(即基质块和割理)的规模在数值模型中实现了流-煤变形过程。裂缝的几何形状是通过从微型CT成像获得的随机简化的2D裂缝网络生成的。该方法最初是根据单裂煤样品的实验结果进行验证的,并且分析扩展到了复杂的裂隙几何形状。裂缝/基质压力,CO 2吸附质量的时空演化,与非溶胀行为进行比较,专门分析了吸附引起的溶胀,局部裂缝孔径和渗透率的变化以及完全裂缝闭合时的接触模型。结果表明,高渗透性裂缝通道为CO 2的初步进入提供了便利扩散到煤基质中,引起吸附引起的基质膨胀。尽管各个基体块在裂缝中注入高流体压力后立即显示出轻微的收缩,但是吸附引起的溶胀迅速克服了这一点,从而导致了在全压力平衡下的整体体积膨胀。进而导致裂缝孔径和渗透率的显着降低。局部裂缝孔径减小的幅度取决于边界矩阵的膨胀行为,从而导致小裂缝基本上完全闭合,从而导致局部局部流向其他CO 2的明显改变。在特定骨折附近注射。接触建模方法确定了复杂几何形状中完全闭合裂缝的时机和位置,与保持流动的较大孔径的表面楔相比,初始初始小孔的对接楔易于完全闭合。

更新日期:2021-01-18
down
wechat
bug