当前位置: X-MOL 学术Biol. Fertil. Soils › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shifts in soil microbial stoichiometry and metabolic quotient provide evidence for a critical tipping point at 1% soil organic carbon in an agricultural post-mining chronosequence
Biology and Fertility of Soils ( IF 6.5 ) Pub Date : 2021-01-16 , DOI: 10.1007/s00374-020-01532-2
Jessica Clayton , Kathleen Lemanski , Michael Bonkowski

Soil microbial C:N:P stoichiometry and microbial maintenance respiration (i.e. metabolic quotient, qCO2) were monitored along a nutrient gradient in soils from a 52-year space-for-time chronosequence of reclaimed agricultural land after brown-coal mining. Land reclamation produced loess soils of initially low (0.2%) SOC. Consecutive agricultural land management led to a gradual recovery of SOC contents. Our data revealed sudden shifts in microbial stoichiometry and metabolic quotient with increasing SOC at a critical value of 1% SOC. As SOC increased, accrual rate of C into microbial biomass decreased, whereas microbial N increased. Simultaneously, metabolic quotient strongly decreased with increasing SOC until the same critical value of 1% SOC and remained at a constant low thereafter. The microbial fractions of the soil in samples containing < 1% SOC were out of stoichiometric equilibrium and were inefficient at immobilising C due to high maintenance respiration. Increasing SOC above the threshold value shifted the soil microbes towards a new equilibrium where N became growth limiting, leading to a more efficient acquisition of C. The shift in microbial N accrual was preluded by high variation in microbial biomass N in soils containing 0.5–0.9% SOC indicative of a regime shift between microbial stoichiometric equilibria. Our data may help in establishing a quantitative framework for SOC targets that, along with agricultural intensification, may better support feedback mechanisms for a sustainable accrual of C in soils.



中文翻译:

土壤微生物化学计量学和代谢商的变化为农业开采后的时间序列中1%土壤有机碳的临界临界点提供了证据

土壤微生物C:N:P化学计量和微生物维持呼吸(即代谢商,qCO 2)在褐煤开采后,经过52年的开垦后农用土地的时空时序,沿着土壤中的养分梯度对土壤进行了监测。土地开垦产生的黄土土壤最初的SOC低(0.2%)。连续的农业土地管理导致SOC含量逐渐恢复。我们的数据显示,在1%SOC的临界值下,微生物化学计量和代谢商会随着SOC的增加而突然变化。随着SOC的增加,C在微生物生物量中的累积率降低,而微生物N则增加。同时,代谢商随SOC的增加而强烈降低,直到相同的临界值(1%SOC)为止,此后一直保持在恒定的低水平。样品中土壤微生物含量< 1%SOC处于化学计量平衡之外,由于维持呼吸较高,因此无法有效地固定C。SOC增加到阈值以上,使土壤微生物趋向于一个新的平衡,在该平衡下N成为生长的限制,从而导致更有效地获取C。微生物N累积的变化是由于微生物生物量N在含0.5-0.9的土壤中变化较大而导致的SOC的百分比表示微生物化学计量平衡之间的变化。我们的数据可能有助于建立SOC目标的定量框架,与农业集约化一起,可以更好地支持可持续地累积土壤中C的反馈机制。从而导致更有效地获得碳。微生物N累积的变化是由于土壤中SOC为0.5–0.9%的土壤中微生物生物量N的高变化所致,表明微生物化学计量平衡之间的变化。我们的数据可能有助于建立SOC目标的定量框架,与农业集约化一起,可以更好地支持可持续地累积土壤中C的反馈机制。从而导致更有效地获得碳。微生物N累积的变化是由于土壤中SOC为0.5–0.9%的土壤中微生物生物量N的高变化所致,表明微生物化学计量平衡之间的变化。我们的数据可能有助于建立SOC目标的定量框架,与农业集约化一起,可以更好地支持可持续地累积土壤中C的反馈机制。

更新日期:2021-01-18
down
wechat
bug