当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Driving energetically unfavorable dehydrogenation dynamics with plasmonics
Science ( IF 44.7 ) Pub Date : 2021-01-14 , DOI: 10.1126/science.abd2847
Katherine Sytwu 1 , Michal Vadai 2 , Fariah Hayee 3 , Daniel K. Angell 2 , Alan Dai 4 , Jefferson Dixon 5 , Jennifer A. Dionne 2
Affiliation  

Coaxing unreactive sites Optical excitation of localized surface plasmon resonances can confine light and create electromagnetic (EM) “hotspots” that can increase catalytic reaction rates. Sytwu et al. show how optical excited plasmons can also control the location of the active site. A crossed-bar gold-palladium hydride (Au-PdHx) plasmonic antenna-reactor system localized EM radiation away from the more reactive PdHx tips. Using in situ environmental transmission electron microscopy, the authors show that changing the illumination wavelength and intensity, along with the surrounding hydrogen gas pressure, could shift dehydrogenation away from the sharp PdHx nanorod tips to the flat middle faces. Science, this issue p. 280 Plasmon excitation can initiate hydrogen dissociation at normally unreactive palladium nanorod crystal faces. Nanoparticle surface structure and geometry generally dictate where chemical transformations occur, with higher chemical activity at sites with lower activation energies. Here, we show how optical excitation of plasmons enables spatially modified phase transformations, activating otherwise energetically unfavorable sites. We have designed a crossed-bar Au-PdHx antenna-reactor system that localizes electromagnetic enhancement away from the innately reactive PdHx nanorod tips. Using optically coupled in situ environmental transmission electron microscopy, we track the dehydrogenation of individual antenna-reactor pairs with varying optical illumination intensity, wavelength, and hydrogen pressure. Our in situ experiments show that plasmons enable new catalytic sites, including dehydrogenation at the nanorod faces. Molecular dynamics simulations confirm that these new nucleation sites are energetically unfavorable in equilibrium and only accessible through tailored plasmonic excitation.

中文翻译:

用等离子体驱动能量不利的脱氢动力学

诱导非反应性位点局部表面等离子体共振的光学激发可以限制光并产生可以提高催化反应速率的电磁 (EM)“热点”。Sytwu 等人。展示光激发等离子体如何控制活性位点的位置。交叉条形金钯氢化物 (Au-PdHx) 等离子体天线反应器系统将 EM 辐射定位在远离反应性更强的 PdHx 尖端。作者使用原位环境透射电子显微镜,表明改变照明波长和强度,以及周围的氢气压力,可以将脱氢从尖锐的 PdHx 纳米棒尖端转移到平坦的中间面。科学,这个问题 p。280 等离子体激发可以在通常不反应的钯纳米棒晶面上引发氢离解。纳米粒子表面结构和几何形状通常决定发生化学转化的位置,在具有较低活化能的位置具有较高的化学活性。在这里,我们展示了等离子体的光学激发如何实现空间修改的相变,激活其他能量上不利的位点。我们设计了一种交叉条形 Au-PdHx 天线反应器系统,该系统将电磁增强远离先天反应性 PdHx 纳米棒尖端。使用光耦合原位环境透射电子显微镜,我们跟踪具有不同光学照明强度、波长和氢压的单个天线-反应器对的脱氢。我们的原位实验表明,等离子体能够产生新的催化位点,包括纳米棒表面的脱氢。
更新日期:2021-01-14
down
wechat
bug