当前位置: X-MOL 学术Electronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Task Migration Combining Energy Efficiency and Load Balancing Optimization in Three-Tier UAV-Enabled Mobile Edge Computing System
Electronics ( IF 2.6 ) Pub Date : 2021-01-15 , DOI: 10.3390/electronics10020190
Wu Ouyang , Zhigang Chen , Jia Wu , Genghua Yu , Heng Zhang

As transportation becomes more convenient and efficient, users move faster and faster. When a user leaves the service range of the original edge server, the original edge server needs to migrate the tasks offloaded by the user to other edge servers. An effective task migration strategy needs to fully consider the location of users, the load status of edge servers, and energy consumption, which make designing an effective task migration strategy a challenge. In this paper, we innovatively proposed a mobile edge computing (MEC) system architecture consisting of multiple smart mobile devices (SMDs), multiple unmanned aerial vehicle (UAV), and a base station (BS). Moreover, we establish the model of the Markov decision process with unknown rewards (MDPUR) based on the traditional Markov decision process (MDP), which comprehensively considers the three aspects of the migration distance, the residual energy status of the UAVs, and the load status of the UAVs. Based on the MDPUR model, we propose a advantage-based value iteration (ABVI) algorithm to obtain the effective task migration strategy, which can help the UAV group to achieve load balancing and reduce the total energy consumption of the UAV group under the premise of ensuring user service quality. Finally, the results of simulation experiments show that the ABVI algorithm is effective. In particular, the ABVI algorithm has better performance than the traditional value iterative algorithm. And in a dynamic environment, the ABVI algorithm is also very robust.

中文翻译:

支持三层无人机的移动边缘计算系统中结合了能效和负载均衡优化的动态任务迁移

随着交通变得更加便捷和高效,用户的移动越来越快。当用户离开原始边缘服务器的服务范围时,原始边缘服务器需要将用户卸载的任务迁移到其他边缘服务器。有效的任务迁移策略需要充分考虑用户的位置,边缘服务器的负载状态和能耗,这使设计有效的任务迁移策略成为一个挑战。在本文中,我们创新地提出了一种移动边缘计算(MEC)系统体系结构,该体系结构由多个智能移动设备(SMD),多个无人机(UAV)和一个基站(BS)组成。此外,我们基于传统的马尔可夫决策过程(MDP)建立了未知奖励的马尔可夫决策过程模型(MDPUR),它综合考虑了迁移距离,无人机的剩余能量状态和无人机的负载状态这三个方面。在MDPUR模型的基础上,提出了一种基于优势的价值迭代(ABVI)算法,以获取有效的任务迁移策略,可以帮助无人机集团在实现负载均衡的前提下,降低无人机集团的总能耗。确保用户服务质量。最后,仿真实验结果表明该算法是有效的。特别是,ABVI算法比传统的值迭代算法具有更好的性能。并且在动态环境中,ABVI算法也非常健壮。我们提出了一种基于优势的价值迭代(ABVI)算法来获得有效的任务迁移策略,可以在确保用户服务质量的前提下,帮助无人机集团实现负载均衡,减少无人机集团的总能耗。最后,仿真实验结果表明该算法是有效的。特别是,ABVI算法比传统的值迭代算法具有更好的性能。并且在动态环境中,ABVI算法也非常健壮。我们提出了一种基于优势的价值迭代(ABVI)算法来获得有效的任务迁移策略,可以在确保用户服务质量的前提下,帮助无人机集团实现负载均衡,减少无人机集团的总能耗。最后,仿真实验结果表明该算法是有效的。特别是,ABVI算法比传统的值迭代算法具有更好的性能。并且在动态环境中,ABVI算法也非常健壮。仿真实验结果表明,该算法是有效的。特别是,ABVI算法比传统的值迭代算法具有更好的性能。并且在动态环境中,ABVI算法也非常健壮。仿真实验结果表明,该算法是有效的。特别是,ABVI算法比传统的值迭代算法具有更好的性能。并且在动态环境中,ABVI算法也非常健壮。
更新日期:2021-01-15
down
wechat
bug