当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Virtual Electrode Design for Lithium-Ion Battery Cathodes
Energy Technology ( IF 3.8 ) Pub Date : 2021-01-14 , DOI: 10.1002/ente.202000891
Jochen Joos 1 , Alexander Buchele 1 , Adrian Schmidt 1 , André Weber 1 , Ellen Ivers-Tiffée 1
Affiliation  

Microstructural characteristics of lithium-ion battery cathodes determine their performance. Thus, modern simulation tools are increasingly important for the custom design of multiphase cathodes. This work presents a new method for generating virtual, yet realistic cathode microstructures. A precondition is a 3D template of a commercial cathode, reconstructed via focused ion beam/scanning electron microscopy (FIB/SEM) tomography and appropriate algorithms. The characteristically shaped micrometer-sized active material (AM) particles and agglomerates of nano-sized carbon-binder (CB) particles are individually extracted from the voxel-based templates. Thereby, a library of roughly 1100 AM particles and 20 CB agglomerates is created. Next, a virtual cathode microstructure is predefined, and representative sets of AM particles and CB agglomerates are built. The following re-assembly of AM particles within a predefined volume box works using dropping and rolling algorithms. Thereby, one can generate cathodes with specified characteristics, such as the volume fraction of AM, CB and pore space, particle-size distributions, and gradients thereof. Naturally, such a virtual twin is a promising starting point for physics-based electrochemical performance models. The workflow from the commercial cathode microstructure through to a full virtual twin will be explained and assessed for a blend cathode made of the two AMs, LiNiCoAlO2 (NCA) and LiCoO2 (LCO).

中文翻译:

锂离子电池阴极的虚拟电极设计

锂离子电池正极的微观结构特性决定了它们的性能。因此,现代仿真工具对于多相阴极的定制设计越来越重要。这项工作提出了一种生成虚拟但逼真的阴极微结构的新方法。先决条件是商业阴极的 3D 模板,通过聚焦离子束/扫描电子显微镜 (FIB/SEM) 断层扫描和适当的算法重建。从基于体素的模板中分别提取具有特征形状的微米级活性材料 (AM) 颗粒和纳米级碳粘合剂 (CB) 颗粒的团聚体。因此,创建了大约 1100 个 AM 粒子和 20 个 CB 团聚体的库。接下来,预定义虚拟阴极微结构,并构建了具有代表性的 AM 颗粒和 CB 团聚体。以下在预定义体积盒内重新组装 AM 粒子使用滴落和滚动算法工作。因此,人们可以生成具有特定特性的阴极,例如 AM、CB 和孔隙空间的体积分数、粒度分布及其梯度。自然,这样的虚拟双胞胎是基于物理的电化学性能模型的一个有希望的起点。将解释和评估从商业阴极微观结构到完全虚拟孪生的工作流程,用于由两种 AM 制成的混合阴极,LiNiCoAlO 例如AM、CB和孔隙空间的体积分数、粒度分布及其梯度。自然,这样的虚拟双胞胎是基于物理的电化学性能模型的一个有希望的起点。将解释和评估从商业阴极微观结构到完全虚拟孪生的工作流程,用于由两种 AM 制成的混合阴极,LiNiCoAlO 例如AM、CB和孔隙空间的体积分数、粒度分布及其梯度。自然,这样的虚拟双胞胎是基于物理的电化学性能模型的一个有希望的起点。将解释和评估从商业阴极微观结构到完全虚拟孪生的工作流程,用于由两种 AM 制成的混合阴极,LiNiCoAlO2 (NCA) 和 LiCoO 2 (LCO)。
更新日期:2021-01-14
down
wechat
bug