当前位置: X-MOL 学术Soil Dyn. Earthq. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design optimization of triple friction pendulums for high-rise buildings considering both seismic and wind loads
Soil Dynamics and Earthquake Engineering ( IF 4.2 ) Pub Date : 2021-01-15 , DOI: 10.1016/j.soildyn.2020.106568
Yanqing Xu , Tracy C. Becker , Tong Guo

Triple friction pendulum isolation bearings are typically designed with only earthquakes in mind, or perhaps with a large enough initial friction coefficient to limit displacement under wind loads. However, for potential application in high-rise buildings, wind demand is of greater concern, and the increased flexibility of the structure can lead to wind-induced floor accelerations that exceed the serviceability limit state. To determine the optimum parameters of triple friction pendulum bearings that minimize the structural response under both wind and seismic loading in high-rise buildings, an optimization methodology (fast elitist non-dominated sorting genetic algorithm) is used. Cost functions are proposed that penalize the story drift and floor acceleration under wind and all earthquake hazard level as well as isolation displacement under large earthquake events. First, a genetic algorithm (GA) is adopted to find the optimal parameters of the bearings designed separately for wind and earthquake excitations. However, the triple friction pendulum bearing (TFPB) designed optimally for earthquake excitation provides less than optimal wind-resistant performance and vice-versa. Afterwards, a multi-objective optimization is used which allows for a tradeoff between the seismic isolation and wind-resistant performance. The design parameters of TFPB can then be selected to achieve the best seismic isolation performance while ensuring that the performance under wind-loading meets requirements.



中文翻译:

同时考虑地震和风荷载的高层建筑三重摩擦摆的设计优化

三重摩擦摆式隔振轴承通常在设计时仅考虑地震,或者可能具有足够大的初始摩擦系数以限制风荷载下的位移。但是,对于在高层建筑中的潜在应用,对风的需求更加令人关注,并且结构的增加的柔韧性会导致风引起的地板加速度超过可使用性极限状态。为了确定使高层建筑在风和地震作用下的结构响应最小化的三重摩擦摆轴承的最佳参数,使用了一种优化方法(快速精英非主导排序遗传算法)。提出了成本函数,该函数对风和所有地震危险等级下的故事漂移和楼层加速度以及大地震事件下的孤立位移进行惩罚。首先,采用遗传算法(GA)来找到分别针对风和地震激励设计的轴承的最佳参数。但是,为地震激励而优化设计的三摩擦摆轴承(TFPB)不能提供最佳的抗风性能,反之亦然。之后,使用多目标优化,从而在隔震和抗风性能之间进行权衡。然后可以选择TFPB的设计参数,以实现最佳的隔震性能,同时确保风荷载下的性能满足要求。采用遗传算法(GA)来找到分别针对风和地震激励设计的轴承的最佳参数。但是,为地震激励而优化设计的三摩擦摆轴承(TFPB)不能提供最佳的抗风性能,反之亦然。然后,使用多目标优化,从而在隔震和抗风性能之间进行权衡。然后可以选择TFPB的设计参数,以实现最佳的隔震性能,同时确保风荷载下的性能满足要求。采用遗传算法(GA)来找到分别针对风和地震激励设计的轴承的最佳参数。但是,为地震激励而优化设计的三摩擦摆轴承(TFPB)不能提供最佳的抗风性能,反之亦然。之后,使用多目标优化,从而在隔震和抗风性能之间进行权衡。然后可以选择TFPB的设计参数,以实现最佳的隔震性能,同时确保风荷载下的性能满足要求。为地震激励而优化设计的三摩擦摆轴承(TFPB)不能提供最佳的抗风性能,反之亦然。然后,使用多目标优化,从而在隔震和抗风性能之间进行权衡。然后可以选择TFPB的设计参数,以实现最佳的隔震性能,同时确保风荷载下的性能满足要求。为地震激励而优化设计的三摩擦摆轴承(TFPB)不能提供最佳的抗风性能,反之亦然。然后,使用多目标优化,从而在隔震和抗风性能之间进行权衡。然后可以选择TFPB的设计参数,以实现最佳的隔震性能,同时确保风荷载下的性能满足要求。

更新日期:2021-01-16
down
wechat
bug