当前位置: X-MOL 学术Miner. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a mechanistic model of granular flow on vibrating screens
Minerals Engineering ( IF 4.9 ) Pub Date : 2021-01-15 , DOI: 10.1016/j.mineng.2020.106771
Olumide Ogunmodimu , Indresan Govender , Aubrey Njema Mainza , Jean-Paul Franzidis

Screening is often applied to separate granulated ore materials into multiple particle size fractions. Therefore, achieving optimal efficiency in the screen performance becomes essential for improved downstream processing. Several techniques such as physical modelling, empirical modelling, mathematical modelling and the discrete element method (DEM) have been adopted by scientists and engineers to study granular flow on vibrating screens. However, advancement in the current state-of-the-art modelling of particle screening requires a mechanistic understanding of their motion along the screen. This necessitates the need to fully quantify the granular rheology determined by the depth of the particle bed along the screen, the solid concentration, and the average velocity of the granular avalanche on the screen. In this study, the concept of granular rheology is applied to study granular media on vibrating screens. This approach overcomes the extreme dependency on machine-specific empirical models for vibrating screens. The kinematic outputs from DEM simulations are used to formulate a visco-plastic model of the granular rheology along an inclined vibratory screen. This mechanistic screening model includes a description of the rheology of granular flow on a vibrating screen. The model captures the flow transition from a quasi-static phase to a dense-flow regime. The quasi-static regime transition occurs at the inertial I value of 0.018, the dense-like regime to a turbulence or gas-like regime at 0.018 < I < 0.5. The inertial regime is observed to occur beyond the dense-flow regime. The model was validated and tested for various vibrational frequencies of the system.



中文翻译:

振动筛上颗粒流力学模型的建立

筛分通常用于将粒状矿物质分离成多个粒度级分。因此,对于改进的下游处理而言,实现筛分性能的最佳效率变得至关重要。科学家和工程师已经采用了多种技术,例如物理建模,经验建模,数学建模和离散元素方法(DEM)来研究振动筛上的颗粒流。但是,当前最新的粒子筛选模型需要对它们沿筛选运动的机械理解。这就需要完全量化由沿着筛子的颗粒床深度,固体浓度和筛子上的雪崩颗粒平均速度确定的颗粒流变性。在这个研究中,粒状流变学的概念被用于研究振动筛上的粒状介质。这种方法克服了振动筛对机器特定的经验模型的极端依赖。DEM模拟的运动学输出用于沿着倾斜振动筛建立颗粒流变学的粘塑性模型。该机械筛选模型包括对振动筛上颗粒流的流变学的描述。该模型捕获了从准静态阶段到密流状态的流动过渡。准静态状态转换发生在惯性上 DEM模拟的运动学输出用于沿着倾斜振动筛建立颗粒流变学的粘塑性模型。该机械筛选模型包括对振动筛上颗粒流的流变学的描述。该模型捕获了从准静态阶段到密流状态的流动过渡。准静态状态转换发生在惯性上 DEM模拟的运动学输出用于沿着倾斜振动筛建立颗粒流变学的粘塑性模型。该机械筛选模型包括对振动筛上颗粒流的流变学的描述。该模型捕获了从准静态阶段到密流状态的流动过渡。准静态状态转换发生在惯性上I值为0.018,在0.018 <I <0.5时,从密实状态变为湍流或类似气体状态。观察到惯性态超出了密流态。该模型已针对系统的各种振动频率进行了验证和测试。

更新日期:2021-01-16
down
wechat
bug