当前位置: X-MOL 学术Plasmonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fano Approximation as a Fast and Effective Way for Estimating Resonance Characteristics of Surface Plasmon Structures
Plasmonics ( IF 3.3 ) Pub Date : 2021-01-15 , DOI: 10.1007/s11468-020-01364-8
Dmitry V. Nesterenko , Roman Pavelkin , Shinji Hayashi , Zouheir Sekkat , Victor Soifer

Developing efficient methods for evaluating resonance characteristics of resonance structures is of particular importance in sensing, spectroscopy, and optical filtration. In the past, the resonance characteristics were evaluated using exact approaches with time-consuming data post-processing algorithms. In this work, using the Fano approximation of the resonance line shapes appearing in spectra of planar plasmonic structures, we obtain analytical expressions for the surface field enhancement, resonance width and height, and sensitivity as functions of structural optical parameters. Approximate data for three-layer Au-, Ag-, Cu-, and Al-based structures in aqueous environment are compared with exact values to estimate the approximation error in the visible and infrared regions. We obtain overall good fits of the approximated estimations to the exact data over the wavelength regions considered, which ensure the validity of the Fano-based approach. Furthermore, by applying the Fano-based approach to gas sensing, we demonstrate that in the angular spectra of the three-layer structures, the excitation of propagating plasmons in the infrared region leads to narrower resonance line shapes due to the decrease in the plasmonic mode damping, resulting in higher sensitivities to changes in air environment. The Fano-based expressions tangibly increase the speed of calculations, provide an insight into fundamental aspects of resonance physics, and can be used for designing efficient sensing structures and characterizing optical changes in the environment.



中文翻译:

Fano近似是一种快速有效的估计表面等离子体结构共振特性的方法

开发用于评估谐振结构的谐振特性的有效方法在传感,光谱学和光学过滤中特别重要。过去,使用精确的方法和耗时的数据后处理算法来评估共振特性。在这项工作中,使用平面等离子体激元结构光谱中出现的共振线形状的Fano近似,我们获得了表面场增强,共振宽度和高度以及灵敏度作为结构光学参数的函数的解析表达式。将三层金,银,铜和铝基结构在水环境中的近似数据与精确值进行比较,以估算可见光和红外区域中的近似误差。我们获得了近似估计值与所考虑的波长区域上的精确数据的总体良好拟合,从而确保了基于Fano的方法的有效性。此外,通过将基于Fano的方法应用于气体感测,我们证明了在三层结构的角谱中,由于等离激元模式的减少,红外区域中传播的等离激元的激发导致共振线形状变窄。阻尼,从而对空气环境的变化更加敏感。基于Fano的表达式切实提高了计算速度,提供了对共振物理学基本面的洞察力,可用于设计有效的感应结构并表征环境中的光学变化。确保基于Fano的方法的有效性。此外,通过将基于Fano的方法应用于气体感测,我们证明了在三层结构的角谱中,由于等离激元模式的减少,红外区域中传播的等离激元的激发导致共振线形状变窄。阻尼,从而对空气环境的变化更加敏感。基于Fano的表达式切实提高了计算速度,提供了对共振物理学基本面的洞察力,可用于设计有效的感应结构并表征环境中的光学变化。确保基于Fano的方法的有效性。此外,通过将基于Fano的方法应用于气体感测,我们证明了在三层结构的角谱中,由于等离激元模式的减少,红外区域中传播的等离激元的激发导致共振线形状变窄。阻尼,从而对空气环境的变化更加敏感。基于Fano的表达式切实提高了计算速度,提供了对共振物理学基本面的洞察力,可用于设计有效的感应结构并表征环境中的光学变化。由于等离激元模式阻尼的减小,红外区域中传播的等离激元的激发导致共振线形状更窄,从而导致对空气环境变化的敏感性更高。基于Fano的表达式切实提高了计算速度,提供了对共振物理学基本面的洞察力,可用于设计有效的感应结构并表征环境中的光学变化。由于等离激元模式阻尼的减小,在红外区域中传播的等离激元的激发导致共振线形状变窄,从而导致对空气环境变化的敏感性更高。基于Fano的表达式切实提高了计算速度,提供了对共振物理学基本面的洞察力,可用于设计有效的感应结构并表征环境中的光学变化。

更新日期:2021-01-15
down
wechat
bug