当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Life cycle assessment of nanoalloy enhanced layered perovskite solid-solid phase change material till 10000 thermal cycles for energy storage applications
Journal of Energy Storage ( IF 8.9 ) Pub Date : 2021-01-14 , DOI: 10.1016/j.est.2020.102220
Cyril Reuben Raj , S. Suresh , Vivek Kumar Singh , R.R. Bhavsar , M. Chandrasekar , V. Archita

Advancement in thermal energy management systems especially in Green building, Electronic/Avionic system, Thermal comfort clothing, Storage for Food and Medical utilities requires sophisticated mechanisms to maintain constant temperature for prolonged period. Phase Change Material (PCM) based thermal energy storage systems act as an effective resource but lags in retaining its performance for longer duration. This article illustrates a synthesised manganese based layered perovskite Solid-Solid PCM (SS-PCM) homogenized with 5 wt.% of nano-encapsulated liquid gallium-indium metal alloy (n-LMA), for energy storage applications by virtue of its high physical, chemical and thermal stability, enhanced thermal conductivity and latent enthalpy. Life cycle assessment of the prepared SS-PCM/n-LMA was conducted using a thermal cycling chamber for 1000, 4000, 7000, and 10000 thermal cycles. Thermal-cycled SS-PCM/n-LMA was characterized for its nano-structural morphology, elemental and chemical composition, thermo-physical properties including phase transition behaviour, enthalpy, thermal degradation, specific heat capacity, and thermal conductivity through FESEM, TEM, SEM, EDS, FTIR, DSC, TGA, and LFA. Addition of n-LMA exhibited an enhancement in thermal conductivity of 21.05% (0.374 W/m-K); charging-discharging enthalpy of 16.84% (74.56 J/g) and 17.61% (76.32 J/g) respectively and increases the energy storage performance. However, effect of thermal cycling led to slight reduction in latent heat by 13.26% (charging), and 12.95% (discharging); and thermal conductivity by 9.15%. The results concluded that SS-PCM/n-LMA composite was highly stable, satisfying physical, chemical and thermal stability till 10000 thermal cycles which ensures its suitability for long-term energy storage applications.



中文翻译:

纳米合金增强层状钙钛矿固-固相变材料的生命周期评估,直至能量存储应用的10000个热循环

热能管理系统的进步,尤其是绿色建筑,电子/航空系统,热舒适服装,食品和医疗设施的存储,需要先进的机制来长时间保持恒温。基于相变材料(PCM)的热能存储系统可作为有效资源,但在较长时间内无法保持其性能。本文介绍了一种合成的锰基层状钙钛矿固-固态PCM(SS-PCM),其与5 wt。%的纳米封装液态镓-铟金属合金(n-LMA)均质,由于其高物理性能而用于储能,化学和热稳定性,增强的导热性和潜在的焓。使用热循环箱对准备的SS-PCM / n-LMA进行了1000、4000,7000和10000个热循环。热循环SS-PCM / n-LMA的特征在于其纳米结构形态,元素和化学组成,热物理特性(包括相变行为),焓,热降解,比热容和通过FESEM,TEM的热导率, SEM,EDS,FTIR,DSC,TGA和LFA。添加n-LMA的导热系数提高了21.05%(0.374 W / mK);充放电焓分别为16.84%(74.56 J / g)和17.61%(76.32 J / g),提高了储能性能。然而,热循环的影响导致潜热略有降低(充电)13.26%和12.95%(放电)。和热导率降低9.15%。结果表明,SS-PCM / n-LMA复合材料非常稳定,满足物理,

更新日期:2021-01-14
down
wechat
bug