当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probing pyrolysis chemistry of 1-heptene pyrolysis with insight into fuel molecular structure effects
Combustion and Flame ( IF 5.8 ) Pub Date : 2021-01-14 , DOI: 10.1016/j.combustflame.2021.01.001
Chuangchuang Cao , Wei Li , Qiang Xu , Beibei Feng , Zhandong Wang , Jiuzhong Yang , Yuyang Li

The pyrolysis of 1-heptene was studied in a flow reactor using synchrotron vacuum ultraviolet photoionization mass spectrometry at 0.04 and 1 atm and in a jet-stirred reactor using gas chromatography at 1 atm. Flow reactor pyrolysis products, including the allyl radical, cycloalkenes and aromatics, were identified and quantified. Alkenes are found to be the dominant product family, among which ethylene is the most abundant product. A detailed intermediate-to-high temperature model of 1-heptene was developed and validated against the new pyrolysis data in this work, as well as previous data of 1-heptene combustion in literature over a wide range of pressures, temperatures and equivalence ratios. Rate of production analysis and sensitivity analysis were performed to reveal the key pathways in fuel decomposition and product formation. The allylic Csingle bondC bond dissociation reaction is concluded as the most important pathway in 1-heptene decomposition. Reactions of allyl, propargyl and cyclopentadienyl radicals play important roles in the formation of cycloalkenes and aromatics. Furthermore, comparative pyrolysis experiments of 1-hexene and n-heptane were also performed in the jet-stirred reactor at 1 atm using gas chromatography to explore fuel molecular structure effects on pyrolysis reactivity and product distributions among 1-alkene and n-alkane fuels. The comparison between 1-heptene and 1-hexene pyrolysis demonstrates that similar fuel molecular structure results in the similarities in primary fuel decomposition pathways and pyrolysis reactivity. Ethylene is the most abundant product in both 1-alkene pyrolysis, and the feature in 1-heptene molecular structure leads to enhanced formation of ethylene in its pyrolysis. The abundant formation of ethyl and methyl radicals leads to higher production of 1-pentene and 1-butene in 1-heptene and 1-hexene pyrolysis, respectively. The comparison between 1-heptene and n-heptane pyrolysis reveals that the existence of Csingle bondC double bond enhances the pyrolysis reactivity of 1-heptene. Different from 1-heptene consumption, n-heptane consumption is dominantly controlled by H abstraction reactions instead of unimolecular decomposition reactions. Propene and 1-butene are prone to be produced in 1-heptene pyrolysis, while 1-hexene has higher mole fractions in n-heptane pyrolysis.



中文翻译:

深入了解燃料分子结构效应,探索1-庚烯热解的热解化学

在流动反应器中使用同步加速器真空紫外光电离质谱法在0.04和1 atm下研究1-庚烯的热解,在喷射搅拌的反应器中使用气相色谱在1 atm进行热解。鉴定并定量了流动反应器热解产物,包括烯丙基,环烯和芳烃。发现烯烃是主要的产物家族,其中乙烯是最丰富的产物。开发了详细的1-庚烯中-高温模型,并针对这项工作中的新热解数据以及文献中有关压力,温度和当量比大范围的1-庚烯燃烧的先前数据进行了验证。进行了生产率分析和敏感性分析,以揭示燃料分解和产物形成的关键途径。烯丙单键C键解离反应被认为是1-庚烯分解中最重要的途径。烯丙基,炔丙基和环戊二烯基的反应在环烯烃和芳族化合物的形成中起重要作用。此外,还使用气相色谱法在1 atm的喷射搅拌反应器中进行了1-己烯和正庚烷的比较热解实验,以研究燃料分子结构对热解反应性和产物在1-烯烃和正烷烃燃料中的分布的影响。1-庚烯和1-己烯热解的比较表明,相似的燃料分子结构导致一次燃料分解途径和热解反应性相似。乙烯是1-烯烃热解中最丰富的产物,1-庚烯分子结构的特征导致乙烯在热解中的形成增加。乙基和甲基自由基的大量形成导致分别在1-庚烯和1-己烯热解中产生更高的1-戊烯和1-丁烯。1-庚烯和正庚烷热解的比较表明,C的存在单键C双键增强了1-庚烯的热解反应性。与1-庚烯消耗不同,正庚烷消耗主要由H提取反应而非单分子分解反应控制。丙烯和1-丁烯易于在1-庚烯热解中生成,而1-己烯在正庚烷热解中的摩尔分数更高。

更新日期:2021-01-14
down
wechat
bug