当前位置: X-MOL 学术Silicon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of Dopingless GaN Nanowire FET with Low ‘Q’ for High Switching and RF Applications
Silicon ( IF 2.8 ) Pub Date : 2021-01-14 , DOI: 10.1007/s12633-020-00912-5
Sarabdeep Singh , Ashish Raman

The unique properties like wide band gap and high electron mobility makes GaN an interesting material to be used in building devices at the nanoscale in recent times. This paper first time proposed a charge plasma (CP) based dopingless gate all around (GAA) GaN Nanowire FET (NWFET) (CP-GaN). The advantages of CP device over junctionless (JL) in NWFET structure along with properties of GaN material, results in a highly efficient structure of CP-GaN. The CP-GaN is compared with JL-GaN and silicon counterparts of CP & JL. Results reveal that CP-GaN is showing outstanding performance as Ion of 3.95 × 10−5 A, Ioff of 5.36 × 10−13 A and Ion/Ioff of 7.37 × 107. The proposed device CP-GaN shows better performance than CP-Si based device. When compared with JL-GaN, CP-GaN shows 55% less DIBL. The figure of merit Q = gm/SS of 0.85 μS/μm-dec/mV, is highest for our proposed CP-GaN. This makes CP-GaN an attractive design to be explored for high switching & low voltage applications with reduced SCEs and lower thermal budget. The other design parameters viz. gate length, gate dielectric, gate and source/drain work functions, nanowire radius and interface trap charges effect are also investigated for further optimization of the proposed design.



中文翻译:

具有低“ Q”值的高掺杂和射频应用的无掺杂GaN纳米线FET设计

宽带隙和高电子迁移率等独特特性使GaN成为近来用于纳米级建筑设备的有趣材料。本文首次提出了一种基于电荷等离子体(CP)的无掺杂栅极(GAA)GaN纳米线FET(NWFET)(CP-GaN)。CP器件在NWFET结构中优于无结(JL)的优势以及GaN材料的特性,导致了CP-GaN的高效结构。将CP-GaN与JL-GaN和CP&JL的硅对应物进行比较。结果表明,CP-GaN表现出出色的性能,I on为3.95×10 -5 A,I off为5.36×10 -13 A,I on / I off为7.37×10 7。所提出的器件CP-GaN显示出比基于CP-Si的器件更好的性能。与JL-GaN相比,CP-GaN的DIBL减少了55%。对于我们提出的CP-GaN ,品质因数Q = g m / SS为0.85μS/μm-dec/ mV,是最高的。这使得CP-GaN成为一种有吸引力的设计,可用于SCE减少和热预算降低的高开关和低压应用。其他设计参数。还研究了栅极长度,栅极电介质,栅极和源极/漏极功函数,纳米线半径和界面陷阱电荷效应,以进一步优化拟议的设计。

更新日期:2021-01-14
down
wechat
bug