当前位置: X-MOL 学术The Journal of Derivatives › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Model-Free Backward and Forward Nonlinear PDEs for Implied Volatility
The Journal of Derivatives ( IF 0.647 ) Pub Date : 2020-04-29 , DOI: 10.3905/jod.2020.1.110
Peter Carr , Andrey Itkin , Sasha Stoikov

The authors derive backward and forward nonlinear partial differential equations that govern the implied volatility of a contingent claim whenever the latter is well defined. This would include at least any contingent claim written on a positive stock price whose payoff at a possibly random time is convex. The authors also discuss suitable initial and boundary conditions for those partial differential equations. Finally, we demonstrate how to solve them numerically by using an iterative finite-difference approach. TOPICS: Volatility measures, options Key Findings • In this article, we derive backward and forward quasilinear parabolic partial differential equations (PDEs) that govern the implied volatility of a contingent claim whenever the latter is well defined. Alternatively, we have derived a forward nonlinear hyperbolic PDE of the first order, which also governs evolution of the implied volatility in (K, T, Z) space. We discuss suitable initial and boundary conditions for those PDEs. • We develop an iterative numerical method to solve the PDEs by using a finite-difference approach. The method is of second order of approximation in both space and time, is unconditionally stable, and preserves positivity of the solution. • Using this method, we compute the PDE implied volatility and find that our intuition behind the main idea of the article is correct. In other words, performance of the finite-difference solver exceeds that of the traditional approach by factor of 40. However, this result is subject to some details, which are highlighted in the article.

中文翻译:

隐含波动率的无模型后向和前向非线性PDE

作者推论出向前和向后的非线性偏微分方程,它们控制了或有债权的隐含波动率,只要后者定义明确。这将至少包括以正股价写的或有债权,其在可能的随机时间的收益是凸的。作者还讨论了那些偏微分方程的合适初始条件和边界条件。最后,我们演示了如何使用迭代有限差分法以数值方式求解它们。主题:波动率度量,选项主要发现•在本文中,我们推导了后向或前向拟线性抛物线偏微分方程(PDE),它们控制或有要求的隐含波动率,只要后者定义明确。或者,我们导出了一阶正向非线性双曲型PDE,它也控制着(K,T,Z)空间中隐含波动率的演变。我们讨论了那些PDE的合适初始条件和边界条件。•我们开发了一种迭代数值方法,通过使用有限差分方法来求解PDE。该方法在时间和空间上都是二阶近似的,是无条件稳定的,并且保持解的正性。•使用这种方法,我们计算了PDE隐含波动率,并发现本文主要思想背后的直觉是正确的。换句话说,有限差分求解器的性能比传统方法的性能高40倍。但是,此结果受某些细节的限制,本文将重点介绍。我们讨论了那些PDE的合适初始条件和边界条件。•我们开发了一种迭代数值方法,通过使用有限差分方法来求解PDE。该方法在时间和空间上都是二阶近似的,是无条件稳定的,并且保持解的正性。•使用这种方法,我们计算了PDE隐含波动率,并发现本文主要思想背后的直觉是正确的。换句话说,有限差分求解器的性能比传统方法的性能高40倍。但是,此结果受某些细节的限制,本文将重点介绍。我们讨论了那些PDE的合适初始条件和边界条件。•我们开发了一种迭代数值方法,通过使用有限差分方法来求解PDE。该方法在时间和空间上都是二阶近似的,是无条件稳定的,并且保持解的正性。•使用这种方法,我们计算了PDE隐含波动率,并发现本文主要思想背后的直觉是正确的。换句话说,有限差分求解器的性能比传统方法的性能高40倍。但是,此结果受某些细节的限制,本文将重点介绍。并保持溶液的正性。•使用这种方法,我们计算了PDE隐含波动率,并发现本文主要思想背后的直觉是正确的。换句话说,有限差分求解器的性能比传统方法的性能高40倍。但是,此结果受某些细节的限制,本文将重点介绍。并保持溶液的正性。•使用这种方法,我们计算了PDE隐含波动率,并发现本文主要思想背后的直觉是正确的。换句话说,有限差分求解器的性能比传统方法的性能高40倍。但是,此结果受某些细节的限制,本文将重点介绍。
更新日期:2020-04-29
down
wechat
bug