当前位置: X-MOL 学术Nanoscale Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable magnetothermal properties of cobalt-doped magnetite–carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy
Nanoscale Advances ( IF 4.6 ) Pub Date : 2021-1-4 , DOI: 10.1039/d0na00820f
Alice G Leonel 1 , Alexandra A P Mansur 1 , Sandhra M Carvalho 1 , Luis Eugenio F Outon 2 , José Domingos Ardisson 3 , Klaus Krambrock 2 , Herman S Mansur 1
Affiliation  

Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (Fe3O4, MION) and cobalt-doped magnetite (Cox-MION, x = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in Fe3O4 nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses. Additionally, the cytotoxicity of these nanoconjugates and their ability to cause cancer cell death through heat induction were evaluated by MTT assays in vitro. The results demonstrated that the progressive substitution of Co in the magnetite host material significantly affected the magnetic anisotropy properties of the ferrofluids. Therefore, Co-doped ferrite (CoxFe(3−x)O4) nanoconjugates enhanced the cell-killing activities in magnetic hyperthermia experiments under alternating magnetic field performed with human brain cancer cells (U87). On the other hand, the Co-doping process retained the pristine inverse spinel crystalline structure of MIONs, and it has not significantly altered the average nanoparticle size (ca.∼7.1 ± 1.6 nm). Thus, the incorporation of cobalt into magnetite-polymer nanostructures may constitute a smart strategy for tuning their magnetothermal capability towards cancer therapy by heat generation.

中文翻译:

钴掺杂磁铁矿-羧甲基纤维素铁磁流体的可调磁热特性:用于癌症治疗中潜在磁热疗应用的智能纳米平台

由于独特的物理化学和磁性特性的结合,磁铁矿纳米颗粒是最有前途的热疗应用铁磁流体之一。在这项研究中,我们通过生态设计和生产了由磁铁矿(Fe 3 O 4,MION)和钴掺杂磁铁矿(Co x -MION,x = 3、5和10%摩尔钴)纳米复合物组成的超顺磁性铁磁流体。使用羧甲基纤维素(CMC)作为生物相容性大分子配体的友好水法。使用 XRD、XRF、XPS、FTIR、DLS、zeta 电位、EMR 和 VSM 分析深入研究了Fe 3 O 4纳米胶体中钴含量逐渐增加的影响。此外,还通过体外MTT 测定评估了这些纳米缀合物的细胞毒性及其通过热诱导导致癌细胞死亡的能力。结果表明,磁铁矿主体材料中钴的逐渐取代显着影响了铁磁流体的磁各向异性。因此,钴掺杂铁氧体(Co x Fe (3− x ) O 4)纳米缀合物增强了人脑癌细胞(U87)在交变磁场下磁热热实验中的细胞杀伤活性。另一方面,共掺杂过程保留了 MION 的原始反尖晶石晶体结构,并且没有显着改变平均纳米颗粒尺寸(∼7.1 ± 1.6 nm)。因此,将钴掺入磁铁矿聚合物纳米结构中可能构成一种明智的策略,可以通过产生热量来调整其磁热能力以实现癌症治疗。
更新日期:2021-01-13
down
wechat
bug