当前位置: X-MOL 学术J. Phys. A: Math. Theor. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-order quantum phase transitions as condensations in the space of states
Journal of Physics A: Mathematical and Theoretical ( IF 2.0 ) Pub Date : 2021-01-13 , DOI: 10.1088/1751-8121/aba144
Massimo Ostilli 1 , Carlo Presilla 2, 3
Affiliation  

We demonstrate that a large class of first-order quantum phase transitions, namely, transitions in which the ground state energy per particle is continuous but its first order derivative has a jump discontinuity, can be described as a condensation in the space of states. Given a system having Hamiltonian H = K + gV, where K and V are two non commuting operators acting on the space of states $\mathbb{F}$, we may always write $\mathbb{F}={\mathbb{F}}_{\text{cond}}\oplus {\mathbb{F}}_{\mathrm{norm}}$ where ${\mathbb{F}}_{\text{cond}}$ is the subspace spanned by the eigenstates of V with minimal eigenvalue and ${\mathbb{F}}_{\mathrm{norm}}={\mathbb{F}}_{\text{cond}}^{\perp }$. If, in the thermodynamic limit, M cond/M → 0, where M and M cond are, respectively, the dimensions of $\mathbb{F}$ and ${\mathbb{F}}_{\text{cond}}$, the above decomposition of $\mathbb{F}$ becomes effective, in the sense that the ground state energy per particle of the system, ϵ, coincides with the smaller between ϵ cond and ϵ norm, the ground state energies per particle of the system restricted to the subspaces ${\mathbb{F}}_{\text{cond}}$ and ${\mathbb{F}}_{\mathrm{norm}}$, respectively: ϵ = min{ϵ cond, ϵ norm}. It may then happen that, as a function of the parameter g, the energies ϵ cond and ϵ norm cross at g = g c. In this case, a first-order quantum phase transition takes place between a condensed phase (system restricted to the small subspace ${\mathbb{F}}_{\text{cond}}$) and a normal phase (system spread over the large subspace ${\mathbb{F}}_{\mathrm{norm}}$). Since, in the thermodynamic limit, M cond/M → 0, the confinement into ${\mathbb{F}}_{\text{cond}}$ is actually a condensation in which the system falls into a ground state orthogonal to that of the normal phase, something reminiscent of Anderson’s orthogonality catastrophe (Anderson 1967 Phys. Rev. Lett. 18 1049). The outlined mechanism is tested on a variety of benchmark lattice models, including spin systems, free fermions with non uniform fields, interacting fermions and interacting hard-core bosons.



中文翻译:

一阶量子相变为状态空间中的凝聚

我们证明了一大类一阶量子相变,即每个粒子的基态能量连续但其一阶导数具有跳跃不连续性的跃迁,可以描述为状态空间中的凝聚。给定一个具有哈密顿H = K + gV的系统,其中KV是作用在状态空间上的两个非交换算子$ \ mathbb {F} $,我们总是可以写出$ \ mathbb {F} = {\ mathbb {F}} _ {\ text {cond}} \ oplus {\ mathbb {F}} _ {\ mathrm {norm}} $其中$ {\ mathbb {F}} _ {\ text {cond}} $V的本征态所跨越的子空间,其特征值和为最小$ {\ mathbb {F}} _ {\ mathrm {norm}} = {\ mathbb {F}} __ \ text {cond}} ^ {\ perp} $。如果在热力学极限下,M cond / M →0,其中M中号 COND分别是的尺寸$ \ mathbb {F} $$ {\ mathbb {F}} _ {\ text {cond}} $,上述分解的$ \ mathbb {F} $生效,在这个意义上,每个系统中,粒子的基态能量ε,与一致的之间的较小ε CONDε 范数,基态能量分别限制在子空间$ {\ mathbb {F}} _ {\ text {cond}} $和中的每个系统粒子$ {\ mathbb {F}} _ {\ mathrm {norm}} $ϵ = min { ϵ condϵ norm }。然后可能发生,作为参数g的函数,能量ϵ condϵ normg = g c处交叉。在这种情况下,一阶量子相变发生在一个凝聚相(系统限于小子空间$ {\ mathbb {F}} _ {\ text {cond}} $)和一个正常相(系统散布在大子空间$ {\ mathbb {F}} _ {\ mathrm {norm}} $)之间。由于在热力学极限M cond / M →0中,限制$ {\ mathbb {F}} _ {\ text {cond}} $实际上是一种冷凝,其中系统进入与正相正交的基态,这使人联想到安德森的正交性灾难(安德森1967年物理学报莱特 181049)。在各种基准晶格模型上测试了概述的机理,包括自旋系统,具有非均匀场的自由费米子,相互作用的费米子和相互作用的硬核玻色子。

更新日期:2021-01-13
down
wechat
bug