当前位置: X-MOL 学术Energy Explor. Exploit. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantitative determination of organic adsorption capacity in the Palaeozoic shales from South China
Energy Exploration & Exploitation ( IF 1.9 ) Pub Date : 2021-01-12 , DOI: 10.1177/0144598720983036
Sibo Wang 1, 2, 3 , Zhiguang Song 2 , Jia Xia 1 , Yuan Gao 1 , YaoPing Wang 1 , Taotao Cao 4
Affiliation  

In this study, the methane adsorption capacity of kerogen isolated from the Cambrian, Silurian, and Permian shales and the impact of soluble organic matter (SOM) on the adsorption capacity of these shales were investigated. The results reveal that 1) the adsorption capacity of kerogen varies in a broad range, from 14.48 to 23.22 cm3/g for the Cambrian kerogens, from 15.50 to 36.06 cm3/g for the Silurian kerogens, and from 10.71 to 11.15 cm3/g for the Permian kerogens; 2) the kerogen adsorption accounts for 33.67–70.23% of the total adsorption capacity of these Palaeozoic extracted shales, demonstrating that kerogen is the primary adsorbing substance in shales; 3) the adsorption isotherms of kerogen in highly mature Cambrian and Silurian shales are similar to those of Triassic coal, while the isotherms of kerogen in the relatively immature Permian shales are similar to those of the immature oil shales; and 4) the SOM demonstrates a significant impact on the adsorption capacity of shales as the removal of SOM can cause a maximum increase of 34.29% or a decrease of 23.36% in the total adsorption capacity of shales. However, there is no clear understanding of the impact of SOM on the methane sorption of shales.

更新日期:2021-01-13
down
wechat
bug