当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non-invasive suppression of essential tremor via phase-locked disruption of its temporal coherence
Nature Communications ( IF 14.7 ) Pub Date : 2021-01-13 , DOI: 10.1038/s41467-020-20581-7
Sebastian R Schreglmann 1 , David Wang 2, 3 , Robert L Peach 4, 5, 6 , Junheng Li 5, 6 , Xu Zhang 7, 8 , Anna Latorre 1 , Edward Rhodes 5, 6 , Emanuele Panella 9 , Antonino M Cassara 10 , Edward S Boyden 11, 12, 13, 14, 15, 16, 17 , Mauricio Barahona 4 , Sabato Santaniello 7, 8 , John Rothwell 1 , Kailash P Bhatia 1 , Nir Grossman 5, 6, 11, 12, 18, 19
Affiliation  

Aberrant neural oscillations hallmark numerous brain disorders. Here, we first report a method to track the phase of neural oscillations in real-time via endpoint-corrected Hilbert transform (ecHT) that mitigates the characteristic Gibbs distortion. We then used ecHT to show that the aberrant neural oscillation that hallmarks essential tremor (ET) syndrome, the most common adult movement disorder, can be transiently suppressed via transcranial electrical stimulation of the cerebellum phase-locked to the tremor. The tremor suppression is sustained shortly after the end of the stimulation and can be phenomenologically predicted. Finally, we use feature-based statistical-learning and neurophysiological-modelling to show that the suppression of ET is mechanistically attributed to a disruption of the temporal coherence of the aberrant oscillations in the olivocerebellar loop, thus establishing its causal role. The suppression of aberrant neural oscillation via phase-locked driven disruption of temporal coherence may in the future represent a powerful neuromodulatory strategy to treat brain disorders.



中文翻译:


通过锁相破坏特发性震颤的时间相干性来非侵入性抑制



异常的神经振荡是许多脑部疾病的标志。在这里,我们首先报告了一种通过端点校正希尔伯特变换(ecHT)实时跟踪神经振荡相位的方法,该变换减轻了特征吉布斯失真。然后,我们使用 ecHT 证明,特发性震颤 (ET) 综合征是最常见的成人运动障碍的标志性异常神经振荡,可以通过对小脑进行锁相震颤的经颅电刺激来暂时抑制。震颤抑制在刺激结束后不久持续,并且可以从现象学上预测。最后,我们使用基于特征的统计学习和神经生理学模型来表明,ET 的抑制在机制上归因于橄榄小脑环中异常振荡的时间相干性的破坏,从而确定了其因果作用。通过锁相驱动的时间相干性破坏来抑制异常神经振荡可能在未来代表一种治疗脑部疾病的强大神经调节策略。

更新日期:2021-01-13
down
wechat
bug