当前位置: X-MOL 学术Nano Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crystal, interfacial and morphological control of electrode materials for nonaqueous potassium-ion batteries
Nano Today ( IF 13.2 ) Pub Date : 2021-01-13 , DOI: 10.1016/j.nantod.2020.101074
Lupeng Zhang , Wei (Alex) Wang , Xiumei Ma , Shanfu Lu , Yan Xiang

In the existing battery system, non-aqueous potassium-ion batteries (PIBs) have attracted considerable interest and exhibited a broad application prospect in the prospective large-scale energy storage due to the abundant and cost-effective resources, fast K-ion conductivity in electrolyte and low standard reduction potential of K+/K. After tremendous efforts for ideal electrode materials and full-cells assembly technologies, the comprehensive performance of PIBs including K-ion diffusion kinetics, K storage capacity and reversibility, has made great progress. This review features our current understanding and the development status of PIBs from the perspective of crystal, interfacial and morphological control on electrode materials for nonaqueous PIBs, including i) the correlation between the lattice structure of electrode material (interlayer spacing, lattice parameter, etc.) and the K+ storage/transfer, ii) K+ transfer/reaction kinetics in two-phase interface and the relationship between phase interface and structural stability and iii) the development status and law of the relationship between morphology and volume strain or K+/electron transfer rate. The summary and perspectives aim to address the crucial issues and explore high-performance PIBs, which may provide a guidance for other energy storage devices. Future research hotspots and other key issues that need to be addressed are outlined.



中文翻译:

非水钾离子电池电极材料的晶体,界面和形态控制

在现有的电池系统中,非水钾离子电池(PIB)吸引了相当大的兴趣,并且由于其丰富且具有成本效益的资源,快速的K离子电导率,在预期的大规模储能中显示出广阔的应用前景。电解质和K +的低标准还原电位/ K。在为理想的电极材料和全电池组装技术付出巨大努力之后,PIB的综合性能(包括K离子扩散动力学,K储存能力和可逆性)取得了长足的进步。这篇综述从非晶体PIB电极材料的晶体,界面和形态控制的角度介绍了我们目前对PIB的理解和发展状况,包括i)电极材料的晶格结构之间的相关性(层间距,晶格参数等)。 )和K +的存储/传输,ii)K +两相界面中的迁移/反应动力学以及相界面与结构稳定性之间的关系; iii)形貌与体积应变或K + /电子转移速率之间关系的发展现状和规律。摘要和观点旨在解决关键问题并探索高性能PIB,这些PIB可能为其他储能设备提供指导。概述了未来的研究热点和其他需要解决的关键问题。

更新日期:2021-01-13
down
wechat
bug